Abstract
Various primary alcohols, and primary, secondary, and tertiary amines were oxidatively
and efficiently converted into the corresponding nitriles in good yields, by 1,3-diiodo-5,5-dimethylhydantoin
(DIH) in aqueous ammonia (NH3 ) at 60 °C.
Key words
primary alcohols - primary amines - secondary amines - tertiary amines - 1,3-diiodo-5,5-dimethylhydantoin
- nitriles - aqueous ammonia
References and Notes
<A NAME="RU14106ST-1A">1a </A>
Friedrick K.
Wallensfels K.
The Chemistry of the Cyano Group
Rappoport Z.
Wiley-Interscience;
New York:
1970.
<A NAME="RU14106ST-1B">1b </A>
North M.
Comprehensive Organic Functional Group Transformation
Katritzky A. R., Meth-Cohn O., Rees C. W., Pergamon;
Oxford:
1995.
<A NAME="RU14106ST-1C">1c </A>
Murahashi S.-I.
Synthesis from Nitriles with Retention of the Cyano Group, In Science of Synthesis
Vol. 19:
Georg Thieme Verlag;
Stuttgart:
2004.
p.345-402
<A NAME="RU14106ST-1D">1d </A>
Collier SJ.
Langer P.
Application of Nitriles as Reagents for Organic Synthesis with Loss of the Nitriles
Functionality, In Science of Synthesis
Vol. 19:
Georg Thieme Verlag;
Stuttgart:
2004.
p.403-425
<A NAME="RU14106ST-2A">2a </A>
Wipf P.
Chem. Rev.
1995,
95:
2115
<A NAME="RU14106ST-2B">2b </A>
Wipf P.
Yokokawa F.
Tetrahedron Lett.
1998,
39:
2223
<A NAME="RU14106ST-2C">2c </A>
Ducept PC.
Marsden SP.
Synlett
2000,
692
<A NAME="RU14106ST-2D">2d </A>
Chihiro M.
Nagamoto H.
Takemura I.
Kitano K.
Komatsu H.
Sekiguchi K.
Tabusa F.
Mori T.
Tominaga M.
Yabuuchi Y.
J. Med. Chem.
1995,
38:
353
<A NAME="RU14106ST-2E">2e </A>
Gu X.-H.
Wan X.-Z.
Jiang B.
Bioorg. Med. Chem. Lett.
1999,
9:
569
<A NAME="RU14106ST-2F">2f </A>
Kadaba PK.
Synthesis
1973,
71
<A NAME="RU14106ST-2G">2g </A>
Diana GD.
Cutcliffe D.
Volkots DL.
Mallamo JP.
Bailey TR.
Vescio N.
Oglesby RC.
Nitz TJ.
Wetzel J.
Giranda V.
Pevear DC.
Dutko FJ.
J. Med. Chem.
1993,
36:
3240
<A NAME="RU14106ST-2H">2h </A>
Wittenberger SJ.
Donner BG.
J. Org. Chem.
1993,
58:
4139
<A NAME="RU14106ST-2I">2i </A>
Shie J.-J.
Fang J.-M.
J. Org. Chem.
2003,
68:
1158
<A NAME="RU14106ST-2J">2j </A>
Medwid JB.
Paul R.
Baker JS.
Brockman JA.
Du MT.
Hallett WA.
Hanifin JW.
Hardy RA.
Tarrant ME.
Torley LW.
Wrenn S.
J. Med. Chem.
1990,
33:
1230
<A NAME="RU14106ST-2K">2k </A>
Khanna IK.
Weier RM.
Yu Y.
Xu XD.
Koszyk FJ.
Collins PW.
Koboldt CM.
Veenhuizen AW.
Perkins WE.
Casler JJ.
Masferrer JL.
Zhang YY.
Gregory SA.
Seibert K.
Isakson PC.
J. Med. Chem.
1997,
40:
1634
<A NAME="RU14106ST-3">3 </A>
Comprehensive Organic Transformation
Larock RC.
VCH Publishers, Inc.;
New York:
1989.
p.976-993
<A NAME="RU14106ST-4A">4a </A>
Clarke TG.
Hampson NA.
Lee JB.
Morley JR.
Scanlon B.
Tetrahedron Lett.
1968,
5685
<A NAME="RU14106ST-4B">4b </A>
Vargha L.
Remenyi M.
J. Chem. Soc.
1951,
1068
<A NAME="RU14106ST-4C">4c </A>
Cason J.
Org. Synth., Coll. Vol. III
Wiley;
New York:
1955.
p.3
<A NAME="RU14106ST-4D">4d </A>
Mihailovic ML.
Stojiljkovic A.
Andrejevic V.
Tetrahedron Lett.
1965,
461
<A NAME="RU14106ST-4E">4e </A>
Stojiljkovic A.
Andrejevic V.
Mihailovic ML.
Tetrahedron
1967,
23:
721
<A NAME="RU14106ST-4F">4f </A>
Below JS.
Garza C.
Mathieson JW.
Chem. Commun.
1970,
634
<A NAME="RU14106ST-4G">4g </A>
Nakagawa K.
Tsuji T.
Chem. Pharm. Bull.
1963,
11:
296
<A NAME="RU14106ST-4H">4h </A>
Troyanskii EI.
Svitanko IV.
Ioffe VA.
Nikishin GI.
Izv. Akad. Nauk SSSR, Ser. Khim.
1982,
2180
<A NAME="RU14106ST-4I">4i </A>
Yamazaki S.
Yamazaki Y.
Bull. Chem. Soc. Jpn.
1990,
63:
301
<A NAME="RU14106ST-4J">4j </A>
Biondini D.
Brinchi L.
Germani R.
Goracci L.
Savelli G.
Eur. J. Org. Chem.
2005,
3060
<A NAME="RU14106ST-4K">4k </A>
Chen E.
Peng Z.
Fu H.
Liu J.
Shao L.
J. Chem. Res., Synop.
1999,
726
<A NAME="RU14106ST-4L">4l </A>
Lee GA.
Freedman HH.
Tetrahedron Lett.
1976,
1641
<A NAME="RU14106ST-4M">4m </A>
Yamazaki S.
Synth. Commun.
1997,
27:
27
<A NAME="RU14106ST-4N">4n </A>
Jursic B.
J. Chem. Res., Synop.
1988,
168
<A NAME="RU14106ST-4O">4o </A>
Nikishin GI.
Troyanskii EI.
Joffe VA.
Izv. Akad. Nauk SSSR, Ser. Khim.
1982,
2758
<A NAME="RU14106ST-4P">4p </A>
Kametani T.
Takahashi K.
Ohsawa T.
Ihara M.
Synthesis
1977,
245
<A NAME="RU14106ST-4Q">4q </A>
Capdevielle P.
Lavigne A.
Maumy M.
Synthesis
1989,
453
<A NAME="RU14106ST-4R">4r </A>
Capdevielle P.
Lavigne A.
Sparfel D.
Baranne-Lafont J.
Nguyen KC.
Maumy M.
Tetrahedron Lett.
1990,
31:
3305
<A NAME="RU14106ST-4S">4s </A>
Maeda Y.
Nishimura T.
Uemura S.
Bull. Chem. Soc. Jpn.
2003,
76:
2399
<A NAME="RU14106ST-4T">4t </A>
Tang R.
Diamond SE.
Neary N.
Mares F.
J. Chem. Soc., Chem. Commun.
1978,
562
<A NAME="RU14106ST-4U">4u </A>
Schröder M.
Griffith WP.
J. Chem. Soc., Chem. Commun.
1979,
58
<A NAME="RU14106ST-4V">4v </A>
Bailey AJ.
James BR.
Chem. Commun.
1996,
2343
<A NAME="RU14106ST-4W">4w </A>
Mori K.
Yamaguchi K.
Mizugaki T.
Ebitani K.
Kaneda K.
Chem. Commun.
2001,
461
<A NAME="RU14106ST-4X">4x </A>
Yamaguchi K.
Mizuno N.
Angew. Chem. Int. Ed.
2003,
42:
1480
<A NAME="RU14106ST-4Y">4y </A>
Moriarty RM.
Vaid RK.
Duncan MP.
Ochiai M.
Inenaga M.
Nagao Y.
Tetrahedron Lett.
1988,
29:
6913
<A NAME="RU14106ST-4Z">4z </A>
Chen F.
Kuang Y.
Dai H.
Lu L.
Huo M.
Synthesis
2003,
2629
<A NAME="RU14106ST-5A">5a </A>
Chen F.
Li Y.
Xu M.
Jia H.
Synthesis
2002,
1804
<A NAME="RU14106ST-5B">5b </A>
McAllister GD.
Wilfred CD.
Taylor RJK.
Synlett
2002,
1291
<A NAME="RU14106ST-6A">6a </A>
Mori N.
Togo H.
Synlett
2005,
1456
<A NAME="RU14106ST-6B">6b </A>
Iida S.
Togo H.
Synlett
2006,
2633
<A NAME="RU14106ST-7">7 </A>
Orazi OO.
Corral RA.
Bertorello HE.
J. Org. Chem.
1965,
30:
1101
<A NAME="RU14106ST-8">8 </A>
Typical Experimental Procedure for Oxidative Conversion of Primary Alcohols into Nitriles :9 To a mixture of dodecanol (186.3 mg, 1 mmol) and aq NH3 (3.0 mL, 45 mmol) was added DIH (731.9 mg, 2.0 mmol) at r.t. under an empty balloon.
The obtained mixture was stirred at 60 °C. After 32 h at the same temperature, the
reaction mixture was quenched with H2 O (20 mL) and sat. aq Na2 SO3 (3 mL) at 0 °C, and was extracted with Et2 O (3 × 15 mL). The organic layer was washed with brine and dried over Na2 SO4 to provide lauronitrile in 97% yield in an almost pure state. If necessary, the product
was purified by column chromatography on silica gel (hexane-EtOAc, 4:1) to give pure
lauronitrile in 97% yield as a colorless oil. IR (NaCl): 2250 cm-1 . 1 H NMR (400 MHz, CDCl3 ): δ = 0.88 (t, J = 7.0 Hz, 3 H), 1.29 (br, 14 H), 1.45 (quin, J = 7.1 Hz, 2 H), 1.66 (quin, J = 7.1 Hz, 2 H), 2.34 (t, J = 7.1 Hz, 2 H). The product was identified by comparison with the commercially available
authentic compound.
Typical Experimental Procedure for Oxidative Conversion of Primary Amines into Nitriles :9 To a mixture of dodecylamine (185.4 mg, 1 mmol) and aq NH3 (3.0 mL, 45 mmol) was added DIH (439.1 mg, 1.2 mmol) at r.t. under an empty balloon.
The obtained mixture was stirred at 60 °C. After 6 h at the same temperature, the
reaction mixture was quenched with H2 O (20 mL) and sat. aq Na2 SO3 (3 mL) at 0 °C, and was extracted with Et2 O (3 × 15 mL). The organic layer was washed with brine and dried over Na2 SO4 to provide lauronitrile in 88% yield in an almost pure state. If necessary, the product
was purified by column chromatography on silica gel (hexane-EtOAc, 4:1) to give pure
lauronitrile as a colorless oil.
<A NAME="RU14106ST-9">9 </A>
All nitriles gave satisfactory spectroscopic data and were identified by comparison
with commercially available authentic materials.