Klin Monbl Augenheilkd 2018; 235(11): 1242-1258
DOI: 10.1055/a-0715-7961
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Optische Kohärenztomografie bei Erkrankungen des zentralen Nervensystems

Optical Coherence Tomography in Disorders of the Central Nervous System
Athina Papadopoulou
1   NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
2   Neurologie, Universitätsspital Basel, Schweiz
,
Frederike Cosima Oertel
1   NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
,
Hanna Zimmermann
1   NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
,
Oliver Zeitz
3   Klinik für Augenheilkunde, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin
,
Alexander U. Brandt
1   NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
4   Neurology, University of California Irvine School of Medicine, Irvine, California, United States
,
Friedemann Paul
1   NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
5   Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin
6   Klinik für Neurologie, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin
› Author Affiliations
Further Information

Publication History

eingereicht 01 June 2018

akzeptiert 20 August 2018

Publication Date:
20 November 2018 (online)

Zusammenfassung

Inflammatorische, degenerative und tumoröse Erkrankungen des zentralen Nervensystems (ZNS) gehen häufig mit Veränderungen am Augenhintergrund und Sehstörungen einher. Mit der optischen Kohärenztomografie (OCT) hat erstmals eine Methode Einzug in das neuroophthalmologische Methodenspektrum gehalten, die das strukturelle Korrelat dieser Sehstörungen quantitativ und für den klinischen Alltag praktikabel erfassen kann. Das auf Interferometrie beruhende, nicht invasive Verfahren ist in der Lage, hochaufgelöste Volumenaufnahmen der Retina aufzunehmen und die Dicke bzw. das Volumen einzelner Schichten der Netzhaut zu messen. Insbesondere die pRNFL (peripapilläre retinale Nervenfaserschicht) und GCIPL (Ganglienzellschicht und innere plexiforme Schicht zusammen) sind in der Neurologie von großem Interesse, da sie Axone und zugehörige Nervenzellen enthalten, die im weiteren Verlauf den Sehnerv bilden. Bei einer akuten Optikusneuritis (ON) kann eine initiale Schwellung der pRNFL zur Diagnose und Differenzialdiagnose der ON und eine Verdünnung der GCIPL während der ersten 4 Wochen zur Prognose der Visuserholung beitragen. Bei der multiplen Sklerose (MS) ist die Rolle der OCT nicht nur in Zusammenhang mit der ON zu sehen. Auch MS-Augen ohne ON zeigen eine Verdünnung der pRNFL und GCIPL, die mit neurodegenerativen Prozessen im gesamten ZNS korreliert. Mehrere Studien haben Korrelationen zwischen diesen OCT-Parametern und dem Risiko für eine klinische Verschlechterung (Behinderungsprogression), kognitive Defizite, aber auch Krankheitsaktivität bei MS gezeigt, wobei es häufig noch unklar ist, wie dieser Zusammenhang in der Behandlung des individuellen Patienten nutzbar gemacht werden kann. OCT ist in den letzten Jahren zunehmend auch bei neurodegenerativen Erkrankungen wie Morbus Parkinson, amyotropher Lateralsklerose und diversen Demenzformen eingesetzt worden. Ein Einsatz in der klinischen Routine ist jedoch noch in deutlich weiterer Ferne als bei entzündlichen ZNS-Erkrankungen, da der klinische Stellenwert von OCT für Diagnostik, Differenzialdiagnostik und Prädiktion bzw. Verlaufsbeurteilung bislang nicht geklärt ist. Dieser Übersichtsartikel soll einen Überblick über die aktuelle Studienlage zu OCT-Parametern und deren Bedeutung bei inflammatorischen, degenerativen und tumorösen Erkrankungen des zentralen Nervensystems schaffen.

Abstract

Retinal changes and visual symptoms are present in several inflammatory, degenerative and tumorous disorders of the central nervous system (CNS). Optical coherence tomography (OCT) is a method that can be used in clinical practice to detect and quantify the structural correlates of these visual symptoms in neurological disorders. OCT is a non-invasive imaging technique, based on interferometry, which can create high-resolution images of the retina and measure the thickness and volume of the different retinal layers. The combined ganglion cell- and inner plexiform layer (GCIPL) and the peripapillary retinal nerve fibre layer (pRNFL) are of particular interest in the field of neurological disorders, since they contain the neuronal bodies (ganglion cells) and their axons that form the optic nerve. In acute optic neuritis (ON), initial swelling of the pRNFL can be detected by OCT and this may contribute to the diagnosis and differential diagnosis of ON; moreover, the extent of the GCIPL-thinning within the first 4 weeks after an acute ON can contribute to the prediction of the long-term visual recovery. However, the role of OCT in the field of multiple sclerosis (MS) is not restricted in patients with ON, since even eyes without an ON-history show mild thinning of the pRNFL and GCIPL. This thinning seems to be associated with neurodegenerative processes in the entire CNS. Several studies showed correlations between these OCT-parameters and a higher risk of clinical deterioration (disability progression), cognitive deficits and disease activity in patients with MS. However, it is often still unclear how these correlations can be useful in the management of the individual patient. In recent years, OCT has been applied to a greater extent to neurodegenerative diseases, such as Parkinsonʼs disease, amyotrophic lateral sclerosis (ALS) and various forms of dementia. However, routine clinical use is still further away than for inflammatory CNS diseases, since the role of OCT in the diagnosis, differential diagnosis and prediction of the clinical course of neurodegenerative diseases is still unclear. This review article offers a summary of the available study results on OCT parameters and their role in inflammatory, degenerative and tumorous diseases of the central nervous system (CNS).

 
  • Literatur

  • 1 Bock M, Paul F, Dörr J. [Diagnosis and monitoring of multiple sclerosis: the value of optical coherence tomography]. Nervenarzt 2013; 84: 483-492
  • 2 Brandt AU, Zimmermann H, Scheel M. et al. Untersuchungen des visuellen Systems in der Neurologie: aktuelle Forschung und klinische Relevanz. Akt Neurol 2017; 44: 27-45
  • 3 Zimmermann H, Oberwahrenbrock T, Brandt AU. et al. Optical coherence tomography for retinal imaging in multiple sclerosis. Degener Neurol Neuromuscul Dis 2014; 2014: 153-162
  • 4 Zimmermann H, Brandt AU, Paul F. Optische Kohärenztomographie in der Neurologie – Methodik und Anwendung in Forschung und Klinik. Klin Neurophysiol 2017; 48: 211-225 doi:10.1055/s-0043-118781
  • 5 Oertel FC, Zimmermann H, Mikolajczak J. et al. Contribution of blood vessels to retinal nerve fiber layer thickness in NMOSD. Neurol Neuroimmunol Neuroinflamm 2017; 4: e338
  • 6 Oberwahrenbrock T, Weinhold M, Mikolajczak J. et al. Reliability of intra-retinal layer thickness estimates. PLoS One 2015; 10: e0137316
  • 7 Knier B, Schmidt P, Aly L. et al. Retinal inner nuclear layer volume reflects response to immunotherapy in multiple sclerosis. Brain 2016; 139: 2855-2863
  • 8 Oberwahrenbrock T, Traber GL, Lukas S. et al. Multicenter reliability of semiautomatic retinal layer segmentation using OCT. Neurol Neuroimmunol Neuroinflamm 2018; 5: e449
  • 9 Cruz-Herranz A, Balk LJ, Oberwahrenbrock T. et al. The APOSTEL recommendations for reporting quantitative optical coherence tomography studies. Neurology 2016; 86: 2303-2309
  • 10 Wu Z, Huang J, Dustin L. et al. Signal strength is an important determinant of accuracy of nerve fiber layer thickness measurement by optical coherence tomography. J Glaucoma 2009; 18: 213-216
  • 11 Tewarie P, Balk L, Costello F. et al. The OSCAR-IB consensus criteria for retinal OCT quality assessment. PLoS One 2012; 7: e34823
  • 12 Schippling S, Balk LJ, Costello F. et al. Quality control for retinal OCT in multiple sclerosis: validation of the OSCAR-IB criteria. Mult Scler 2015; 21: 163-170
  • 13 Toosy AT, Mason DF, Miller DH. Optic neuritis. Lancet Neurol 2014; 13: 83-99
  • 14 Galetta SL, Villoslada P, Levin N. et al. Acute optic neuritis: Unmet clinical needs and model for new therapies. Neurol Neuroimmunol Neuroinflamm 2015; 2: e135
  • 15 Petzold A, Wattjes MP, Costello F. et al. The investigation of acute optic neuritis: a review and proposed protocol. Nat Rev Neurol 2014; 10: 447-458
  • 16 Soelberg K, Jarius S, Skejoe H. et al. A population-based prospective study of optic neuritis. Mult Scler 2017; 23: 1893-1901
  • 17 Brandt AU, Specovius S, Oberwahrenbrock T. et al. Frequent retinal ganglion cell damage after acute optic neuritis. Mult Scler Relat Disord 2018; 22: 141-147
  • 18 [Anonymous] The clinical profile of optic neuritis. Experience of the Optic Neuritis Treatment Trial. Optic Neuritis Study Group. Arch Ophthalmol 1991; 109: 1673-1678
  • 19 Katz B. The dyschromatopsia of optic neuritis: a descriptive analysis of data from the optic neuritis treatment trial. Trans Am Ophthalmol Soc 1995; 93: 685-708
  • 20 Schneck ME, Haegerstrom-Portnoy G. Color vision defect type and spatial vision in the optic neuritis treatment trial. Invest Ophthalmol Vis Sci 1997; 38: 2278-2289
  • 21 Henderson APD, Altmann DR, Trip AS. et al. A serial study of retinal changes following optic neuritis with sample size estimates for acute neuroprotection trials. Brain 2010; 133: 2592-2602
  • 22 Kupersmith MJ, Mandel G, Anderson S, Meltzer DE, Kardon R. Baseline, one and three month changes in the peripapillary retinal nerve fiber layer in acute optic neuritis: relation to baseline vision and MRI. J Neurol Sci 2011; 308: 117-123
  • 23 Syc SB, Saidha S, Newsome SD. et al. Optical coherence tomography segmentation reveals ganglion cell layer pathology after optic neuritis. Brain 2012; 135: 521-533
  • 24 Martínez-Lapiscina EH. Ganglion cell layer atrophy starts one week after onset of acute optic neuritis and progress over 18 months. Im Internet: https://onlinelibrary.ectrims-congress.eu/ectrims/2017/ACTRIMS-ECTRIMS2017/202398/elena.h.martinez-lapiscina.ganglion.cell.layer.atrophy.starts.one.week.after.html?f=media=3 Stand: 24.05.2018
  • 25 Wicki CA. Temporal dynamics of structural and functional retinal damage in acute optic neutitis. Im Internet: https://onlinelibrary.ectrims-congress.eu/ectrims/2017/ACTRIMS-ECTRIMS2017/200059/carla.andrea.wicki.temporal.dynamics.of.structural.and.functional.retinal.html?f=media=3 Stand: 24.05.2018
  • 26 Optic Neuritis Study Group. Multiple sclerosis risk after optic neuritis: final optic neuritis treatment trial follow-up. Arch Neurol 2008; 65: 727-732
  • 27 Britze J, Pihl-Jensen G, Frederiksen JL. Retinal ganglion cell analysis in multiple sclerosis and optic neuritis: a systematic review and meta-analysis. J Neurol 2017; 264: 1837-1853
  • 28 Costello F, Coupland S, Hodge W. et al. Quantifying axonal loss after optic neuritis with optical coherence tomography. Ann Neurol 2006; 59: 963-969
  • 29 Gabilondo I, Martínez-Lapiscina EH, Fraga-Pumar E. et al. Dynamics of retinal injury after acute optic neuritis. Ann Neurol 2015; 77: 517-528
  • 30 Kaufhold F, Zimmermann H, Schneider E. et al. Optic neuritis is associated with inner nuclear layer thickening and microcystic macular edema independently of multiple sclerosis. PLoS One 2013; 8: e71145
  • 31 Costello F, Hodge W, Pan YI. et al. Retinal nerve fiber layer and future risk of multiple sclerosis. Can J Neurol Sci 2008; 35: 482-487
  • 32 Stadelmann C. Multiple sclerosis as a neurodegenerative disease: pathology, mechanisms and therapeutic implications. Curr Opin Neurol 2011; 24: 224-229
  • 33 Raftopoulos R, Hickman SJ, Toosy A. et al. Phenytoin for neuroprotection in patients with acute optic neuritis: a randomised, placebo-controlled, phase 2 trial. Lancet Neurol 2016; 15: 259-269
  • 34 Sühs KW, Hein K, Sättler MB. et al. A randomized, double-blind, phase 2 study of erythropoietin in optic neuritis. Ann Neurol 2012; 72: 199-210
  • 35 Esfahani MR, Harandi ZA, Movasat M. et al. Memantine for axonal loss of optic neuritis. Graefes Arch Clin Exp Ophthalmol 2012; 250: 863-869
  • 36 Cadavid D, Balcer L, Galetta S. et al. Safety and efficacy of opicinumab in acute optic neuritis (RENEW): a randomised, placebo-controlled, phase 2 trial. Lancet Neurol 2017; 16: 189-199
  • 37 Diem R, Molnar F, Beisse F. et al. Treatment of optic neuritis with erythropoietin (TONE): a randomised, double-blind, placebo-controlled trial-study protocol. BMJ Open 2016; 6: e010956
  • 38 Krieger SC, Cook K, De Nino S. et al. The topographical model of multiple sclerosis: A dynamic visualization of disease course. Neurol Neuroimmunol Neuroinflamm 2016; 3: e279
  • 39 Parisi V, Manni G, Spadaro M. et al. Correlation between morphological and functional retinal impairment in multiple sclerosis patients. Invest Ophthalmol Vis Sci 1999; 40: 2520-2527
  • 40 Calabresi PA, Balcer LJ, Frohman EM. Optical Coherence Tomography in neurologic Diseases. New York: Cambridge University Press; 2015
  • 41 Thompson AJ, Banwell BL, Barkhof F. et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol 2018; 17: 162-173
  • 42 Oberwahrenbrock T, Ringelstein M, Jentschke S. et al. Retinal ganglion cell and inner plexiform layer thinning in clinically isolated syndrome. Mult Scler 2013; 19: 1887-1895
  • 43 Nolan R, Akhand O, Calabresi PA. et al. Optimal inter-eye difference thresholds in retinal nerve fiber layer and ganglion cell layer thickness for predicting a unilateral optic nerve lesion in multiple sclerosis: an international collaborative study. Poster Presentation in the American Academy of Neurology 70th Annual Meeting in Los Angeles, CA. 2018
  • 44 Petzold A, de Boer JF, Schippling S. et al. Optical coherence tomography in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurol 2010; 9: 921-932
  • 45 Oberwahrenbrock T, Schippling S, Ringelstein M. et al. Retinal damage in multiple sclerosis disease subtypes measured by high-resolution optical coherence tomography. Mult Scler Int 2012; 2012: 530305 doi:10.1155/2012/530305
  • 46 Petzold A, Balcer LJ, Calabresi PA. et al. Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurol 2017; 16: 797-812
  • 47 Narayanan D, Cheng H, Bonem KN. et al. Tracking changes over time in retinal nerve fiber layer and ganglion cell-inner plexiform layer thickness in multiple sclerosis. Mult Scler 2014; 20: 1331-1341
  • 48 Pulicken M, Gordon-Lipkin E, Balcer LJ. et al. Optical coherence tomography and disease subtype in multiple sclerosis. Neurology 2007; 69: 2085-2092
  • 49 Klistorner A, Sriram P, Vootakuru N. et al. Axonal loss of retinal neurons in multiple sclerosis associated with optic radiation lesions. Neurology 2014; 82: 2165-2172
  • 50 Sinnecker T, Oberwahrenbrock T, Metz I. et al. Optic radiation damage in multiple sclerosis is associated with visual dysfunction and retinal thinning – an ultrahigh-field MR pilot study. Eur Radiol 2015; 25: 122-131
  • 51 Gordon-Lipkin E, Chodkowski B, Reich DS. et al. Retinal nerve fiber layer is associated with brain atrophy in multiple sclerosis. Neurology 2007; 69: 1603-1609
  • 52 Pfueller CF, Brandt AU, Schubert F. et al. Metabolic changes in the visual cortex are linked to retinal nerve fiber layer thinning in multiple sclerosis. PLoS One 2011; 6: e18019
  • 53 Dörr J, Wernecke KD, Bock M. et al. Association of retinal and macular damage with brain atrophy in multiple sclerosis. PLoS One 2011; 6: e18132
  • 54 Zimmermann H, Freing A, Kaufhold F. et al. Optic neuritis interferes with optical coherence tomography and magnetic resonance imaging correlations. Mult Scler 2013; 19: 443-450
  • 55 Saidha S, Sotirchos ES, Oh J. et al. Relationships between retinal axonal and neuronal measures and global central nervous system pathology in multiple sclerosis. JAMA Neurol 2013; 70: 34-43
  • 56 Saidha S, Al-Louzi O, Ratchford JN. et al. Optical coherence tomography reflects brain atrophy in multiple sclerosis: A four-year study. Ann Neurol 2015; 78: 801-813
  • 57 Martinez-Lapiscina EH, Arnow S, Wilson JA. et al. Retinal thickness measured with optical coherence tomography and risk of disability worsening in multiple sclerosis: a cohort study. Lancet Neurol 2016; 15: 574-584
  • 58 Bsteh G, Hegen H, Teuchner B. et al. Peripapillary retinal nerve fibre layer as measured by optical coherence tomography is a prognostic biomarker not only for physical but also for cognitive disability progression in multiple sclerosis. Mult Scler 2017; DOI: 10.1177/1352458517740216.
  • 59 Rao SM, Leo GJ, Ellington L. et al. Cognitive dysfunction in multiple sclerosis. II. Impact on employment and social functioning. Neurology 1991; 41: 692-696
  • 60 Paul F. Pathology and MRI: exploring cognitive impairment in MS. Acta Neurol Scand 2016; 134 (Suppl. 200) S24-S33
  • 61 Weinges-Evers N, Brandt AU, Bock M. et al. Correlation of self-assessed fatigue and alertness in multiple sclerosis. Mult Scler 2010; 16: 1134-1140
  • 62 Rao SM, Martin AL, Huelin R. et al. Correlations between MRI and information processing speed in MS: a meta-analysis. Mult Scler Int 2014; 2014: 975803
  • 63 Coric D, Balk LJ, Verrijp M. et al. Cognitive impairment in patients with multiple sclerosis is associated with atrophy of the inner retinal layers. Mult Scler 2018; 24: 158-166
  • 64 Zimmermann HG, Knier B, Oberwahrenbrock T. et al. Association of retinal ganglion cell layer thickness with future disease activity in patients with clinically isolated syndrome. JAMA Neurol 2018; DOI: 10.1001/jamaneurol.2018.1011.
  • 65 Pisa M, Guerrieri S, Di Maggio G. et al. No evidence of disease activity is associated with reduced rate of axonal retinal atrophy in MS. Neurology 2017; 89: 2469-2475
  • 66 Balk L. Retinal inner nuclear layer volume; a potential new outcome measure for optic neuritis treatment trials in MS. Im Internet: https://onlinelibrary.ectrims-congress.eu/ectrims/2017/ACTRIMS-ECTRIMS2017/200249/lisanne.j.balk.retinal.inner.nuclear.layer.volume.a.potential.new.outcome.html Stand: 30.05.2018
  • 67 Wingerchuk DM, Banwell B, Bennett JL. et al. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology 2015; 85: 177-189
  • 68 Takeshita Y, Obermeier B, Cotleur AC. et al. Effects of neuromyelitis optica-IgG at the blood-brain barrier in vitro. Neurol Neuroimmunol Neuroinflamm 2016; 4: e311
  • 69 Metz I, Beißbarth T, Ellenberger D. et al. Serum peptide reactivities may distinguish neuromyelitis optica subgroups and multiple sclerosis. Neurol Neuroimmunol Neuroinflamm 2016; 3: e204
  • 70 Zekeridou A, Lennon VA. Aquaporin-4 autoimmunity. Neurol Neuroimmunol Neuroinflamm 2015; 2: e110
  • 71 Melamed E, Levy M, Waters PJ. et al. Update on biomarkers in neuromyelitis optica. Neurol Neuroimmunol Neuroinflamm 2015; 2: e134
  • 72 Kim HJ, Paul F, Lana-Peixoto MA. et al. MRI characteristics of neuromyelitis optica spectrum disorder: an international update. Neurology 2015; 84: 1165-1173
  • 73 Stellmann JP, Krumbholz M, Friede T. et al. Immunotherapies in neuromyelitis optica spectrum disorder: efficacy and predictors of response. J Neurol Neurosurg Psychiatry 2017; 88: 639-647
  • 74 Trebst C, Jarius S, Berthele A. et al. Update on the diagnosis and treatment of neuromyelitis optica: recommendations of the Neuromyelitis Optica Study Group (NEMOS). J Neurol 2014; 261: 1-16
  • 75 Ayzenberg I, Schöllhammer J, Hoepner R. et al. Efficacy of glatiramer acetate in neuromyelitis optica spectrum disorder: a multicenter retrospective study. J Neurol 2016; 263: 575-582
  • 76 Valentino P, Marnetto F, Granieri L. et al. Aquaporin-4 antibody titration in NMO patients treated with rituximab: A retrospective study. Neurol Neuroimmunol Neuroinflamm 2017; 4: e317
  • 77 Ellwardt E, Ellwardt L, Bittner S. et al. Monitoring B-cell repopulation after depletion therapy in neurologic patients. Neurol Neuroimmunol Neuroinflamm 2018; 5: e463
  • 78 Gahlen A, Trampe AK, Haupeltshofer S. et al. Aquaporin-4 antibodies in patients treated with natalizumab for suspected MS. Neurol Neuroimmunol Neuroinflamm 2017; 4: e363
  • 79 Jarius S, Ruprecht K, Kleiter I. et al. MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 1: Frequency, syndrome specificity, influence of disease activity, long-term course, association with AQP4-IgG, and origin. J Neuroinflammation 2016; 13: 279
  • 80 Ramanathan S, Reddel SW, Henderson A. et al. Antibodies to myelin oligodendrocyte glycoprotein in bilateral and recurrent optic neuritis. Neurol Neuroimmunol Neuroinflamm 2014; 1: e40
  • 81 Hacohen Y, Palace J. Time to separate MOG-Ab-associated disease from AQP4-Ab-positive neuromyelitis optica spectrum disorder. Neurology 2018; 90: 947-948
  • 82 Waters P, Woodhall M, OʼConnor KC. et al. MOG cell-based assay detects non-MS patients with inflammatory neurologic disease. Neurol Neuroimmunol Neuroinflamm 2015; 2: e89
  • 83 Zamvil SS, Slavin AJ. Does MOG Ig-positive AQP4-seronegative opticospinal inflammatory disease justify a diagnosis of NMO spectrum disorder?. Neurol Neuroimmunol Neuroinflamm 2015; 2: e62
  • 84 Reindl M, Rostasy K. MOG antibody-associated diseases. Neurol Neuroimmunol Neuroinflamm 2015; 2: e60
  • 85 Ramanathan S, Prelog K, Barnes EH. et al. Radiological differentiation of optic neuritis with myelin oligodendrocyte glycoprotein antibodies, aquaporin-4 antibodies, and multiple sclerosis. Mult Scler 2016; 22: 470-482
  • 86 Costello F. Optical coherence tomography in neuro-ophthalmology. Neurol Clin 2017; 35: 153-163
  • 87 Merle H, Olindo S, Donnio A. et al. Retinal peripapillary nerve fiber layer thickness in neuromyelitis optica. Invest Ophthalmol Vis Sci 2008; 49: 4412-4417
  • 88 Schneider E, Zimmermann H, Oberwahrenbrock T. et al. Optical coherence tomography reveals distinct patterns of retinal damage in neuromyelitis optica and multiple sclerosis. PLoS One 2013; 8: e66151
  • 89 Sotirchos ES, Saidha S, Byraiah G. et al. In vivo identification of morphologic retinal abnormalities in neuromyelitis optica. Neurology 2013; 80: 1406-1414
  • 90 Oertel FC, Zimmermann H, Paul F. et al. Optical coherence tomography in neuromyelitis optica spectrum disorders: potential advantages for individualized monitoring of progression and therapy. EPMA J 2018; 9: 21-33
  • 91 Havla J, Kümpfel T, Schinner R. et al. Myelin-oligodendrocyte-glycoprotein (MOG) autoantibodies as potential markers of severe optic neuritis and subclinical retinal axonal degeneration. J Neurol 2017; 264: 139-151
  • 92 Akaishi T, Sato DK, Nakashima I. et al. MRI and retinal abnormalities in isolated optic neuritis with myelin oligodendrocyte glycoprotein and aquaporin-4 antibodies: a comparative study. J Neurol Neurosurg Psychiatry 2016; 87: 446-448
  • 93 Pache F, Zimmermann H, Mikolajczak J. et al. MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 4: Afferent visual system damage after optic neuritis in MOG-IgG-seropositive versus AQP4-IgG-seropositive patients. J Neuroinflammation 2016; 13: 282
  • 94 Brandt AU, Oberwahrenbrock T, Kadas EM. et al. Dynamic formation of macular microcysts independent of vitreous traction changes. Neurology 2014; 83: 73-77
  • 95 Gelfand JM, Cree BA, Nolan R. et al. Microcystic inner nuclear layer abnormalities and neuromyelitis optica. JAMA Neurol 2013; 70: 629-633
  • 96 Monteiro MLR, Fernandes DB, Apóstolos-Pereira SL. et al. Quantification of retinal neural loss in patients with neuromyelitis optica and multiple sclerosis with or without optic neuritis using Fourier-domain optical coherence tomography. Invest Ophthalmol Vis Sci 2012; 53: 3959-3966
  • 97 Schmidt F, Zimmermann H, Mikolajczak J. et al. Severe structural and functional visual system damage leads to profound loss of vision-related quality of life in patients with neuromyelitis optica spectrum disorders. Mult Scler Relat Disord 2017; 11: 45-50
  • 98 Ringelstein M, Kleiter I, Ayzenberg I. et al. Visual evoked potentials in neuromyelitis optica and its spectrum disorders. Mult Scler 2014; 20: 617-620
  • 99 Jeong IH, Kim HJ, Kim NH. et al. Subclinical primary retinal pathology in neuromyelitis optica spectrum disorder. J Neurol 2016; 263: 1343-1348
  • 100 Oertel FC, Kuchling J, Zimmermann H. et al. Microstructural visual system changes in AQP4-antibody–seropositive NMOSD. Neurol Neuroimmunol Neuroinflamm 2017; 4: e334
  • 101 Oertel FC, Havla J, Roca-Fernández A. et al. Retinal ganglion cell loss in neuromyelitis optica: a longitudinal study. J Neurol Neurosurg Psychiatry 2018; DOI: 10.1136/jnnp-2018-318382.
  • 102 Felix CM, Levin MH, Verkman AS. Complement-independent retinal pathology produced by intravitreal injection of neuromyelitis optica immunoglobulin G. J Neuroinflammation 2016; 13: 275
  • 103 Ventura RE, Kister I, Chung S. et al. Cervical spinal cord atrophy in NMOSD without a history of myelitis or MRI-visible lesions. Neurol Neuroimmunol Neuroinflamm 2016; 3: e224
  • 104 Zeka B, Hastermann M, Kaufmann N. et al. Aquaporin 4-specific T cells and NMO-IgG cause primary retinal damage in experimental NMO/SD. Acta Neuropathol Commun 2016; 4: 82
  • 105 Yamamura T, Nakashima I. Foveal thinning in neuromyelitis optica: a sign of retinal astrocytopathy?. Neurol Neuroimmunol Neuroinflamm 2017; 4: e347
  • 106 Reichenbach A, Bringmann A. New functions of Müller cells. Glia 2013; 61: 651-678
  • 107 Reichenbach A, Bringmann A. Müller Cells in the healthy and diseased Retina. New York: Springer; 2010
  • 108 De Hoz R, Rojas B, Ramírez AI. et al. Retinal macroglial responses in health and disease. Biomed Res Int 2016; 2016: 2954721
  • 109 Weinshenker BG, Barron G, Behne JM. et al. Challenges and opportunities in designing clinical trials for neuromyelitis optica. Neurology 2015; 84: 1805-1815
  • 110 Kleffner I, Dörr J, Ringelstein M. et al. Diagnostic criteria for Susac syndrome. J Neurol Neurosurg Psychiatry 2016; 87: 1287-1295
  • 111 Susac JO, Hardman JM, Selhorst JB. Microangiopathy of the brain and retina. Neurology 1979; 29: 313-316
  • 112 Dörr J, Krautwald S, Wildemann B. et al. Characteristics of Susac syndrome: a review of all reported cases. Nat Rev Neurol 2013; 9: 307-316
  • 113 Saw VP, Canty PA, Green CM. et al. Susac syndrome: microangiopathy of the retina, cochlea and brain. Clin Experiment Ophthalmol 2000; 28: 373-381
  • 114 Roessler-Górecka M, Mendel T, Wiśniowska J. et al. Neuropsychological characteristics of encephalopathy in Susacʼs Syndrome – case report. Neurol Neurochir Pol 2017; 51: 174-179
  • 115 Buzzard KA, Reddel SW, Yiannikas C. et al. Distinguishing Susacʼs syndrome from multiple sclerosis. J Neurol 2015; 262: 1613-1621
  • 116 Algahtani H, Shirah B, Amin M. et al. Susac syndrome misdiagnosed as multiple sclerosis with exacerbation by interferon beta therapy. Neuroradiol J 2018; 31: 207-212
  • 117 Zhovtis Ryerson L, Kister I, Snuderl M. et al. Incomplete Susac syndrome exacerbated after natalizumab. Neurol Neuroimmunol Neuroinflamm 2015; 2: e151
  • 118 McLeod DS, Ying HS, McLeod CA. et al. Retinal and optic nerve head pathology in Susacʼs syndrome. Ophthalmology 2011; 118: 548-552
  • 119 Vila N, Graus F, Blesa R. et al. Microangiopathy of the brain and retina (Susacʼs syndrome): two patients with atypical features. Neurology 1995; 45: 1225-1226
  • 120 Rennebohm RM, Asdaghi N, Srivastava S. et al. Guidelines for treatment of Susac syndrome – an update. Int J Stroke 2018; DOI: 10.1177/1747493017751737.
  • 121 Jarius S, Kleffner I, Dörr JM. et al. Clinical, paraclinical and serological findings in Susac syndrome: an international multicenter study. J Neuroinflammation 2014; 11: 46
  • 122 Hardy TA, OʼBrien B, Gerbis N. et al. Brain histopathology in three cases of Susacʼs syndrome: implications for lesion pathogenesis and treatment. J Neurol Neurosurg Psychiatry 2015; 86: 582-584
  • 123 Susac JO, Murtagh FR, Egan RA. et al. MRI findings in Susacʼs syndrome. Neurology 2003; 61: 1783-1787
  • 124 Wuerfel J, Sinnecker T, Ringelstein EB. et al. Lesion morphology at 7 Tesla MRI differentiates Susac syndrome from multiple sclerosis. Mult Scler 2012; 18: 1592-1599
  • 125 Martinet N, Fardeau C, Adam R. et al. Fluorescein and indocyanine green angiographies in Susac syndrome. Retina 2007; 27: 1238-1242
  • 126 Brandt AU, Oberwahrenbrock T, Costello F. et al. Retinal Lesion Evolution in Susac Syndrome. Retina 2016; 36: 366-374
  • 127 Brandt AU, Zimmermann H, Kaufhold F. et al. Patterns of retinal damage facilitate differential diagnosis between Susac syndrome and MS. PLoS One 2012; 7: e38741
  • 128 Ringelstein M, Albrecht P, Kleffner I. et al. Retinal pathology in Susac syndrome detected by spectral-domain optical coherence tomography. Neurology 2015; 85: 610-618
  • 129 Brandt AU, Oberwahrenbrock T, Costello F. et al. Retinal lesion evolution in Susac syndrome. Retina 2016; 36: 366-374
  • 130 Reznicek L, Klein T, Wieser W. et al. Megahertz ultra-wide-field swept-source retina optical coherence tomography compared to current existing imaging devices. Graefes Arch Clin Exp Ophthalmol 2014; 252: 1009-1016
  • 131 Kashani AH, Chen C-L, Gahm JK. et al. Optical coherence tomography angiography: a comprehensive review of current methods and clinical applications. Prog Retin Eye Res 2017; 60: 66-100
  • 132 García-Serrano JL, Muñoz de Escalona-Rojas JE, Callejas-Rubio JL. et al. Optical coherence tomography angiography in the early diagnosis of Susac syndrome. Neurologia 2017; DOI: 10.1016/j.nrl.2017.07.014.
  • 133 Eckstein C, Saidha S, Sotirchos ES. et al. Detection of clinical and subclinical retinal abnormalities in neurosarcoidosis with optical coherence tomography. J Neurol 2012; 259: 1390-1398
  • 134 Brandt AU, Oberwahrenbrock T, Mikolajczak J. et al. Visual dysfunction, but not retinal thinning, following anti-NMDA receptor encephalitis. Neurol Neuroimmunol Neuroinflamm 2016; 3: e198
  • 135 Slotnick S, Ding Y, Glazman S. et al. A novel retinal biomarker for Parkinsonʼs disease: quantifying the foveal pit with optical coherence tomography. Mov Disord 2015; 30: 1692-1695
  • 136 Roth NM, Saidha S, Zimmermann H. et al. Photoreceptor layer thinning in idiopathic Parkinsonʼs disease. Mov Disord 2014; 29: 1163-1170
  • 137 La Morgia C, Di Vito L, Carelli V. et al. Patterns of retinal ganglion cell damage in neurodegenerative disorders: parvocellular vs. magnocellular degeneration in optical coherence tomography studies. Front Neurol 2017; 8: 710
  • 138 Doustar J, Torbati T, Black KL. et al. Optical coherence tomography in Alzheimerʼs disease and other neurodegenerative diseases. Front Neurol 2017; 8: 701
  • 139 Spina Tensini F, Sato MT, Shiokawa N. et al. A comparative optical coherence tomography study of spinocerebellar ataxia types 3 and 10. Cerebellum 2017; 16: 797-801
  • 140 Kersten HM, Roxburgh RH, Danesh-Meyer HV. Ophthalmic manifestations of inherited neurodegenerative disorders. Nat Rev Neurol 2014; 10: 349-362
  • 141 Loh EH, Ong YT, Venketasubramanian N. et al. Repeatability and reproducibility of retinal neuronal and axonal measures on spectral-domain optical coherence tomography in patients with cognitive impairment. Front Neurol 2017; 8: 359
  • 142 Stricker S, Oberwahrenbrock T, Zimmermann H. et al. Temporal retinal nerve fiber loss in patients with spinocerebellar ataxia type 1. PLoS One 2011; 6: e23024
  • 143 Roth NM, Saidha S, Zimmermann H. et al. Optical coherence tomography does not support optic nerve involvement in amyotrophic lateral sclerosis. Eur J Neurol 2013; 20: 1170-1176
  • 144 Hübers A, Müller HP, Dreyhaupt J. et al. Retinal involvement in amyotrophic lateral sclerosis: a study with optical coherence tomography and diffusion tensor imaging. J Neural Transm Vienna 2016; 123: 281-287
  • 145 Ringelstein M, Albrecht P, Südmeyer M. et al. Subtle retinal pathology in amyotrophic lateral sclerosis. Ann Clin Transl Neurol 2014; 1: 290-297
  • 146 Saenz R, Cheng H, Prager TC. et al. Use of A-scan ultrasound and optical coherence tomography to differentiate papilledema from pseudopapilledema. Optom Vis Sci 2017; 94: 1081-1089
  • 147 Thompson AC, Bhatti MT, El-Dairi MA. Bruchʼs membrane opening on optical coherence tomography in pediatric papilledema and pseudopapilledema. J AAPOS 2018; 22: 38-43.e3
  • 148 Albrecht P, Blasberg C, Ringelstein M. et al. Optical coherence tomography for the diagnosis and monitoring of idiopathic intracranial hypertension. J Neurol 2017; 264: 1370-1380
  • 149 Vanburen JM. Trans-synaptic retrograde degeneration in the visual system of primates. J Neurol Neurosurg Psychiatry 1963; 26: 402-409
  • 150 Jindahra P, Petrie A, Plant GT. The time course of retrograde trans-synaptic degeneration following occipital lobe damage in humans. Brain 2012; 135: 534-541
  • 151 Jindahra P, Petrie A, Plant GT. Retrograde trans-synaptic retinal ganglion cell loss identified by optical coherence tomography. Brain 2009; 132: 628-634
  • 152 Park H-YL, Park YG, Cho A-H. et al. Transneuronal retrograde degeneration of the retinal ganglion cells in patients with cerebral infarction. Ophthalmology 2013; 120: 1292-1299
  • 153 Goto K, Miki A, Yamashita T. et al. Sectoral analysis of the retinal nerve fiber layer thinning and its association with visual field loss in homonymous hemianopia caused by post-geniculate lesions using spectral-domain optical coherence tomography. Graefes Arch Clin Exp Ophthalmol 2016; 254: 745-756
  • 154 Balk LJ, Steenwijk MD, Tewarie P. et al. Bidirectional trans-synaptic axonal degeneration in the visual pathway in multiple sclerosis. J Neurol Neurosurg Psychiatry 2015; 86: 419-424
  • 155 Feucht N, Maier M, Lepennetier G. et al. Optical coherence tomography angiography indicates associations of the retinal vascular network and disease activity in multiple sclerosis. Mult Scler 2018; DOI: 10.1177/1352458517750009.
  • 156 Yadav SK, Motamedi S, Oberwahrenbrock T. et al. CuBe: parametric modeling of 3D foveal shape using cubic Bézier. Biomed Opt Express 2017; 8: 4181-4199
  • 157 Gelfand JM, Nolan R, Schwartz DM. et al. Microcystic macular oedema in multiple sclerosis is associated with disease severity. Brain 2012; 135: 1786-1793