Aktuelle Ernährungsmedizin 2019; 44(05): 311-321
DOI: 10.1055/a-0901-2481
Originalarbeit
© Georg Thieme Verlag KG Stuttgart · New York

Veränderte intestinale bakterielle Zusammensetzung bei Patienten mit Histaminintoleranz

Differences in the Bacterial Pattern of Patients with Histamine Intolerance
Monic Schink
1   Universitätsklinikum Erlangen, Medizinische Klinik 1, Hector Center für Ernährung, Bewegung und Sport
,
Peter C. Konturek
2   Thüringen-Kliniken Georgius Agricola GmbH Standort, Saalfeld, Klinik für Innere Medizin II
,
Esther Tietz
1   Universitätsklinikum Erlangen, Medizinische Klinik 1, Hector Center für Ernährung, Bewegung und Sport
,
Walburga Dieterich
1   Universitätsklinikum Erlangen, Medizinische Klinik 1, Hector Center für Ernährung, Bewegung und Sport
,
Markus F. Neurath
1   Universitätsklinikum Erlangen, Medizinische Klinik 1, Hector Center für Ernährung, Bewegung und Sport
,
Yurdagül Zopf
1   Universitätsklinikum Erlangen, Medizinische Klinik 1, Hector Center für Ernährung, Bewegung und Sport
› Author Affiliations
Further Information

Publication History

Publication Date:
23 October 2019 (online)

Zusammenfassung

Hintergrund Die Existenz der Histaminintoleranz (HIT) ist umstritten. Als Ursache wird ein gestörter Histaminabbau infolge einer Diaminooxidase(DAO)-Defizienz vermutet. Doch auch andere Faktoren, z. B. eine erhöhte Histaminproduktion durch Darmbakterien, können zu erhöhten Histaminspiegel beitragen. Ziel dieser Untersuchung war es, eine mögliche Veränderung der Darmbakterien in histaminintoleranten Patienten im Vergleich zu gesunden Personen zu detektieren.

Material und Methodik Bei allen Studienprobanden erfolgte die Bestimmung von Gesamt-IgE, nahrungsmittelspezifischen IgEs, TNF-α, Plasmahistamin sowie der Serum-DAO-Aktivität. Anhand von Stuhlproben wurde die Histamin- und Zonulinkonzentration sowie die bakterielle Zusammensetzung mittels 16S-rRNA-Sequenzierung unter Verwendung der Illumina Plattform analysiert.

Ergebnisse Insgesamt 18 Probanden (30,2 ± 12,5 Jahre, 94,4 % weiblich) wurden in die Studie eingeschlossen. Diese umfassten Patienten mit HIT (n = 8; 28,9 ± 11,2 Jahre) und gesunde Kontrollen (n = 10; 31,3 ± 13,9 Jahre). Innerhalb der Studiengruppen wurden keine signifikanten Unterschiede in der Histaminkonzentration im Stuhl festgestellt, wohingegen die HIT-Patienten tendenziell erhöhte Zonulinkonzentration im Stuhl aufwiesen. Die Mikrobiomanalyse zeigte eine erniedrigte bakterielle α-Diversität (p = 0,05) und ein erhöhtes Vorkommen von Proteobacteria in der HIT-Gruppe. Weiterhin wiesen die HIT-Patienten ein signifikant geringeres Vorkommen der Butyrat-produzierenden Bakteriengattungen Faecalibacterium (p = 0,045) und Butyricimonas (p = 0,003) auf. Zudem waren die Anteile an Sutterella (p = 0,043) und Hespellia (p = 0,043) erniedrigt. In keiner Studiengruppe wurden vermehrt histaminproduzierende Bakterien detektiert.

Schlussfolgerung Unsere Ergebnisse deuten auf eine veränderte Darm-Mikrobiota in Patienten mit HIT hin. Der erhöhte Anteil von Proteobacteria und der erniedrigte Anteil an Butyrat-produzierenden Bakterien sowie höhere Zonulinwerte im Stuhl weisen dabei auf eine mögliche Dysbiose oder eine gestörte Darmbarriere hin. Eine erhöhte intestinale Histaminexposition durch Darmbakterien scheint in der Pathogenese der Histaminintoleranz hingegen unwahrscheinlich.

Abstract

Background Histamine intolerance (HIT) is a controversially discussed disorder. An impaired degradation of oral histamine intake due to diamine oxidase (DAO) deficiency is suggested as main cause, but other factors, including an altered gut flora, may also contribute to elevated histamine levels. We aimed to determine differences in the intestinal bacterial pattern of HIT-patients in comparison to healthy persons (HC).

Material and methods All participants had a blood testing for total IgE, food-specific IgEs, TNF-α, plasma histamine and serum DAO activities. Stool samples were collected for analysis of stool histamine and zonulin levels. The bacterial composition of the stool samples was analysed by 16 s rRNA sequencing using Illumina platform.

Results A total of 18 participants (30.2 ± 12.5 yrs, 94,4 % female) were included in the study, and categorized into HIT-patients (n = 8, 28.9 ± 11.2 yrs, 100 % female) and healthy controls (n = 10, 31.3 ± 13.9 yrs, 90 % female). No significant differences in stool histamine levels were observed between groups, but HIT-patients showed tendentially increased levels of fecal zonulin. Microbiome analysis revealed a reduced bacterial diversity (p = 0.05) and a higher abundance of Proteobacteria in the HIT-group. Additionally, HIT-patients showed a significantly decreased abundance of the butyrate-producing genera Faecalibacterium (p = 0.045) and Butyricimonas (p = 0.003) as well as lower proportions of Sutterella (p = 0.043) and Hespellia (p = 0.043). No increased numbers of known histamine-producing bacteria were detected in the study groups.

Conclusion Our study results suggest an alteration of the microbial composition in HIT-patients. The higher abundance of Proteobacteria and lower abundance of butyrate-producing bacteria, as well as elevated stool zonulin levels indicate a dysbiosis and impaired intestinal barrier. However, an elevated histamine exposure due to gut bacteria may not be responsible for HIT pathogenesis.

Die Online-Tab. 1 und 2 finden Sie online

 
  • Literatur

  • 1 Soost S, Leynaert B, Almqvist C. et al. Risk factors of adverse reactions to food in German adults. Clin Exp Allergy 2009; 39: 1036-1044
  • 2 Zopf Y, Baenkler HW, Silbermann A. et al. The differential diagnosis of food intolerance. Dtsch Arztebl Int 2009; 106: 359-369
  • 3 Savage J, Johns CB. Food allergy: epidemiology and natural history. Immunol Allergy Clin North Am 2015; 35: 45-59
  • 4 Maintz L, Novak N. Histamine and histamine intolerance. Am J Clin Nutr 2007; 85: 1185-1196
  • 5 Kovacova-Hanuskova E, Buday T, Gavliakova S. et al. Histamine, histamine intoxication and intolerance. Allergol Immunopathol (Madr) 2015; 43: 498-506
  • 6 Reese I, Ballmer-Weber B, Beyer K. et al. German guideline for the management of adverse reactions to ingested histamine: Guideline of the German Society for Allergology and Clinical Immunology (DGAKI), the German Society for Pediatric Allergology and Environmental Medicine (GPA), the German Association of Allergologists (AeDA), and the Swiss Society for Allergology and Immunology (SGAI). Allergo J Int 2017; 26: 72-79
  • 7 Kohn JB. Is there a diet for histamine intolerance?. J Acad Nutr Diet 2014; 114: 1860
  • 8 Smolinska S, Jutel M, Crameri R. et al. Histamine and gut mucosal immune regulation. Allergy 2014; 69: 273-281
  • 9 Deepika Priyadarshani WM, Rakshit SK. Screening selected strains of probiotic lactic acid bacteria for their ability to produce biogenic amines (histamine and tyramine). International Journal of Food Science & Technology 2011; 46: 2062-2069
  • 10 Spinler JK, Sontakke A, Hollister EB. et al. From prediction to function using evolutionary genomics: human-specific ecotypes of Lactobacillus reuteri have diverse probiotic functions. Genome Biol Evol 2014; 6: 1772-1789
  • 11 Tang WH, Hazen SL. The contributory role of gut microbiota in cardiovascular disease. J Clin Invest 2014; 124: 4204-4211
  • 12 Lerner A, Aminov R, Matthias T. Dysbiosis May Trigger Autoimmune Diseases via Inappropriate Post-Translational Modification of Host Proteins. Front Microbiol 2016; 7: 84
  • 13 Marasco G, Di Biase AR, Schiumerini R. et al. Gut Microbiota and Celiac Disease. Dig Dis Sci 2016; 61: 1461-1472
  • 14 Pinzer TC, Tietz E, Waldmann E. et al. Circadian profiling reveals higher histamine plasma levels and lower diamine oxidase serum activities in 24% of patients with suspected histamine intolerance compared to food allergy and controls. Allergy 2017; 73: 949-957
  • 15 Arndt D, Xia J, Liu Y. et al. METAGENassist: a comprehensive web server for comparative metagenomics. Nucleic Acids Res 2012; 40: W88-95
  • 16 Dhariwal A, Chong J, Habib S. et al. MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res 2017; 45: W180-W188
  • 17 Anderson MJ. Permutational Multivariate Analysis of Variance (PERMANOVA). In: Balakrishnan N, Colton T, Everitt B, Piegorsch W, Ruggeri F, Teugels JF. Wiley StatsRef: Statistics Reference Online. New Jersey: John Wiley & Sons; 2017. DOI: 10.1002/9781118445112.stat07841
  • 18 Lin L, Zhang J. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases. BMC Immunol 2017; 18: 2
  • 19 Barcik W, Wawrzyniak M, Akdis CA. et al. Immune regulation by histamine and histamine-secreting bacteria. Curr Opin Immunol 2017; 48: 108-113
  • 20 Bodmer S, Imark C, Kneubühl M. Biogenic amines in foods: histamine and food processing. Inflamm Res 1999; 48: 296-300
  • 21 Halász A, Baráth A, Simon-Sarkadi L. et al. Biogenic amines and their production by microorganisms in food. Trends in Food science & Technology 1994; 5: 42-49
  • 22 Pugin B, Barcik W, Westermann P. et al. A wide diversity of bacteria from the human gut produces and degrades biogenic amines. Microbial Ecology in Health and Disease 2017; 28: 1-9
  • 23 Emborg J, Dalgaard P. Modelling the effect of temperature, carbon dioxide, water activity and pH on growth and histamine formation by Morganella psychrotolerans. Int J Food Microbiol 2008; 128: 226-233
  • 24 Carvalho FA, Koren O, Goodrich JK. et al. Transient inability to manage proteobacteria promotes chronic gut inflammation in TLR5-deficient mice. Cell Host Microbe 2012; 12: 139-152
  • 25 Shin NR, Whon TW, Bae JW. Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol 2015; 33: 496-503
  • 26 Litvak Y, Byndloss MX, Tsolis RM. et al. Dysbiotic Proteobacteria expansion: a microbial signature of epithelial dysfunction. Curr Opin Microbiol 2017; 39: 1-6
  • 27 Downs IA, Aroniadis OC, Kelly L. et al. Postinfection Irritable Bowel Syndrome: The Links Between Gastroenteritis, Inflammation, the Microbiome, and Functional Disease. J Clin Gastroenterol 2017; 51: 869-877
  • 28 Carroll IM, Ringel-Kulka T, Siddle JP. et al. Alterations in composition and diversity of the intestinal microbiota in patients with diarrhea-predominant irritable bowel syndrome. Neurogastroenterol Motil 2012; 24: 521-530, e248
  • 29 Mukhopadhya I, Hansen R, El-Omar EM. et al. IBD-what role do Proteobacteria play?. Nat Rev Gastroenterol Hepatol 2012; 9: 219-230
  • 30 Fox GE, Wisotzkey JD, Jurtshuk P. et al. How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 1992; 42: 166-170
  • 31 Miquel S, Martin R, Rossi O. et al. Faecalibacterium prausnitzii and human intestinal health. Curr Opin Microbiol 2013; 16: 255-261
  • 32 Duncan SH, Louis P, Flint HJ. Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Appl Environ Microbiol 2004; 70: 5810-5817
  • 33 Sakamoto M, Takagaki A, Matsumoto K. et al. Butyricimonas synergistica gen. nov., sp. nov. and Butyricimonas virosa sp. nov., butyric acid-producing bacteria in the family 'Porphyromonadaceae' isolated from rat faeces. Int J Syst Evol Microbiol 2009; 59: 1748-1753
  • 34 Wang W, Chen L, Zhou R. et al. Increased proportions of Bifidobacterium and the Lactobacillus group and loss of butyrate-producing bacteria in inflammatory bowel disease. J Clin Microbiol 2014; 52: 398-406
  • 35 Qin J, Li Y, Cai Z. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012; 490: 55
  • 36 Karlsson FH, Fåk F, Nookaew I. et al. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nature Communications 2012; 3: 1245
  • 37 Bunz A, Haller B, Gundling F. et al. Referenzwerte für Zonulin bei darmgesunden Probanden. Z Gastroenterol 2015; 53: KG033
  • 38 Mujagic Z, Ludidi S, Keszthelyi D. et al. Small intestinal permeability is increased in diarrhoea predominant IBS, while alterations in gastroduodenal permeability in all IBS subtypes are largely attributable to confounders. Aliment Pharmacol Ther 2014; 40: 288-297
  • 39 Bellot P, Frances R, Such J. Pathological bacterial translocation in cirrhosis: pathophysiology, diagnosis and clinical implications. Liver Int 2013; 33: 31-39
  • 40 Latorre M, Krishnareddy S, Freedberg DE. Microbiome as mediator: Do systemic infections start in the gut?. World J Gastroenterol 2015; 21: 10487-10492
  • 41 Mangin I, Bonnet R, Seksik P. et al. Molecular inventory of faecal microflora in patients with Crohn's disease. FEMS Microbiol Ecol 2004; 50: 25-36
  • 42 Lim MY, You HJ, Yoon HS. et al. The effect of heritability and host genetics on the gut microbiota and metabolic syndrome. Gut 2017; 66: 1031-1038
  • 43 Williams BL, Hornig M, Parekh T. et al. Application of Novel PCR-Based Methods for Detection, Quantitation, and Phylogenetic Characterization of Sutterella Species in Intestinal Biopsy Samples from Children with Autism and Gastrointestinal Disturbances. MBio 2012; 3: e00261-11
  • 44 Biagi E, Candela M, Centanni M. et al. Gut microbiome in Down syndrome. PloS one 2014; 9: e112023
  • 45 Hiippala K, Kainulainen V, Kalliomaki M. et al. Mucosal Prevalence and Interactions with the Epithelium Indicate Commensalism of Sutterella spp. Front Microbiol 2016; 7: 1706
  • 46 Whitehead TR, Cotta MA, Collins MD. et al. Hespellia stercorisuis gen. nov., sp. nov. and Hespellia porcina sp. nov., isolated from swine manure storage pits. Int J Syst Evol Microbiol 2004; 54: 241-245
  • 47 Nishino K, Nishida A, Inoue R. et al. Analysis of endoscopic brush samples identified mucosa-associated dysbiosis in inflammatory bowel disease. J Gastroenterol 2017; 53: 95-106
  • 48 Lozupone CA, Stombaugh JI, Gordon JI. et al. Diversity, stability and resilience of the human gut microbiota. Nature 2012; 489: 220-230
  • 49 Le Chatelier E, Nielsen T, Qin J. et al. Richness of human gut microbiome correlates with metabolic markers. Nature 2013; 500: 541-546