Klin Monbl Augenheilkd 2021; 238(09): 1010-1017
DOI: 10.1055/a-1002-0100
Experimentelle Studie

Erhöhte NF-κB- und iNOS-Expression in Keratozyten von Keratokonuspatienten – Hinweise auf eine entzündliche Komponente?

Increased NF-κB and iNOS Expression in Keratoconus Keratocytes – Hints for an Inflammatory Component?
Tanja Stachon
1   Klinik für Augenheilkunde, Universitätsklinikum des Saarlandes UKS, Homburg/Saar
,
Lorenz Latta
1   Klinik für Augenheilkunde, Universitätsklinikum des Saarlandes UKS, Homburg/Saar
,
Krasimir Kolev
2   Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
,
Berthold Seitz
1   Klinik für Augenheilkunde, Universitätsklinikum des Saarlandes UKS, Homburg/Saar
,
Achim Langenbucher
3   Institut für Experimentelle Ophthalmologie, Universität des Saarlandes, Homburg/Saar
,
Nóra Szentmáry
1   Klinik für Augenheilkunde, Universitätsklinikum des Saarlandes UKS, Homburg/Saar
› Author Affiliations

Zusammenfassung

Hintergrund In den letzten Jahren mehren sich Hinweise auf eine entzündliche Komponente beim Keratokonus (KC). Ein Schlüsselgen bei entzündlichen Prozessen ist der Nuclear Factor Kappa B (NF-κB). NF-κB ist ein Transkriptionsfaktor, der unter anderem das Enzym Nitric Oxide Synthase (NOS), das mit dem konkurrierenden Enzym Arginase (Arg) bei entzündlichen Prozessen involviert ist, aktiviert. Ziel dieser Studie war es, die Isotypen von NOS und Arginase zu analysieren, die Expression NF-κB, NOS und Arginase sowie den regulativen Mechanismus von NOS und Arginase in Keratozyten von Keratokonuspatienten mithilfe des Inhibitors 1400W in vitro zu untersuchen.

Methoden Primäre humane Keratozyten wurden durch enzymatische Behandlung mit Kollagenase A aus humanen Korneoskleralscheiben (n = 8) und von Explantaten von geplanten perforierenden Keratoplastiken (KC-Patienten) isoliert (n = 8) und in DMEM/F12-Kulturmedium, versetzt mit 5% fetalem Kälberserum, kultiviert. Die Expression von NF-κB, NOS und Arginase wurden mit quantitativer PCR (qPCR) und Westernblot-Analyse (WB) untersucht. Nitrit- und Ureakonzentrationen im Zellkulturüberstand wurden nach Zugabe des NOS-Inhibitors 1400W (0 – 40 µM) analysiert.

Ergebnisse In den Keratozyten wurden ausschließlich die Isotypen iNOS (induzierbare NO-Synthase) und Arg-II nachgewiesen. Die mRNA-Expression von NF-κB und iNOS waren in KC-Keratozyten höher als in normalen Zellen (p = 0,0135 und p = 0,0001), während in der Arg-II-Expression keine Unterschiede messbar waren. Im WB war bei NF-κB eine höhere Bandenintensität messbar (p = 0,0012), bei iNOS konnten keine Unterschiede in der Bandenintensität nachgewiesen werden. Im Überstand der KC-Keratozyten wurden geringere Konzentrationen von Nitrit und Urea nach Zugabe des Inhibitors 1400W gemessen (p = ≤ 0,014), nicht jedoch bei normalen Zellen (p ≥ 0,178).

Schlussfolgerung Aufgrund der erhöhten Expression von NF-κB und iNOS muss von einer inflammatorischen Komponente beim Keratokonus ausgegangen werden. Die unterschiedliche Regulation der KC-Keratozyten durch den iNOS-Inhibitor 1400W legt eine veränderte metabolische Aktivität nahe, die durch entzündliche Prozesse hervorgerufen werden kann.

Abstract

Purpose In recent years, there has been increasing evidence of an inflammatory component in keratoconus. A key gene in inflammatory processes is the nuclear factor kappa B (NF-κB). NF-κB is a transcription factor for the enzyme nitric oxide synthase (NOS), which is involved with the competing enzyme arginase (Arg) in inflammatory processes. The aim of this study was to analyze the isotypes of NOS and arginase, the expression of NF-κB, NOS and arginase, and the regulatory mechanism of NOS and arginase in keratocytes of keratoconus patients using the inhibitor 1400W in vitro.

Methods Human keratocytes were isolated from surgically removed corneas of 8 KC patients and 8 normal human corneal buttons and were cultured to confluence, in vitro. Quantitative PCR and Western blot analysis were performed to examine NF-κB, NOS and arginase expression in keratocytes. Nitrite and urea concentrations in the supernatant of the cells were analyzed using 0 – 40 µM 1400W iNOS inhibitor concentrations.

Results Only the isotypes iNOS and Arg-II were detected in the keratocytes. The mRNA expression of NF-κB and iNOS were higher in KC keratocytes than in normal cells (p = 0.0135 and p = 0.0001), whereas no differences were measurable in Arg-II expression. In the WB, a higher band intensity was measurable in NF-κB (p = 0.0012), and in iNOS, no differences in band intensity could be detected. In the supernatant of the KC keratocytes, lower concentrations of nitrite and urea were measured after the addition of the inhibitor 1400W (p ≤ 0.014), but not in normal cells (p ≥ 0.178).

Conclusion Due to the increased expression of NF-κB and iNOS, an inflammatory component in keratoconus must be assumed. The different regulation of the KC keratocytes by the iNOS inhibitor 1400W suggests an altered metabolic activity which can be caused by inflammatory processes.



Publication History

Received: 01 July 2019

Accepted: 16 August 2019

Article published online:
10 October 2019

© 2019. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Krachmer JH, Feder RS, Belin MW. Keratoconus and related noninflammatory corneal thinning disorders. Surv Ophthalmol 1984; 28: 293-322
  • 2 Godefrooij DA, de Wit GA, Uiterwaal CS. et al. Age-specific Incidence and Prevalence of Keratoconus: A Nationwide Registration Study. Am J Ophthalmol 2017; 175: 169-172
  • 3 Vincent AL, Weiser BA, Cupryn M. et al. Computerized corneal topography in a paediatric population with Down syndrome. Clin Experiment Ophthalmol 2005; 33: 47-52
  • 4 Gatinel D. Challenging the “No Rub, No Cone” Keratoconus Conjecture. Int J Kerat Ect Cor Dis 2018; 7: 66-81
  • 5 Weed KH, MacEwen CJ, Giles T. et al. The Dundee University Scottish Keratoconus study: demographics, corneal signs, associated diseases, and eye rubbing. Eye (Lond) 2008; 22: 534-541
  • 6 Pásztor D, Kolozsvári BL, Csutak A. et al. Scheimpflug Imaging Parameters Associated with Tear Mediators and Bronchial Asthma in Keratoconus. J Ophthalmol 2016; 2016: 9392640
  • 7 Abu-Amero KK, Al-Muammar AM, Kondkar AA. Genetics of keratoconus: where do we stand?. J Ophthalmol 2014; 2014: 641708
  • 8 Jun AS, Cope L, Speck C. et al. Subnormal cytokine profile in the tear fluid of keratoconus patients. PLoS One 2011; 6: e16437
  • 9 Khaled ML, Helwa I, Drewry M. et al. Molecular and Histopathological Changes Associated with Keratoconus. Biomed Res Int 2017; 2017: 7803029
  • 10 Lema I, Duran JA. Inflammatory molecules in the tears of patients with keratoconus. Ophthalmology 2005; 112: 654-659
  • 11 Nishtala K, Pahuja N, Shetty R. et al. Tear biomarkers for keratoconus. Eye Vis 2016; 3: 19
  • 12 Karamichos D, Zieske JD, Sejersen H. et al. Tear metabolite changes in keratoconus. Exp Eye Res 2015; 132: 1-8
  • 13 McKay TB, Hjortdal J, Sejersen H. et al. Differential Effects of Hormones on Cellular Metabolism in Keratoconus In Vitro. Sci Rep 2017; 7: 42896
  • 14 Munder M. Arginase: An emerging key player in the mammalian immune system. Br J Pharmacol 2009; 158: 638-651
  • 15 Morris SM. Arginine metabolism: boundaries of our knowledge. J Nutr 2007; 137: 1602S-1609S
  • 16 Stachon T, Kolev K, Flasko Z. et al. Arginase activity, urea, and hydroxyproline concentration are reduced in keratoconus keratocytes. Graefes Arch Clin Exp Ophthalmol 2017; 255: 91-97
  • 17 Stachon T, Stachon A, Hartmann U. et al. Urea, uric acid, prolactin and fT4 concentrations in aqueous humor of keratoconus patients. Curr Eye Res 2017; 42: 842-846
  • 18 Vallance P, Leiper J. Blocking NO synthesis: how, where and why?. Nat Rev Drug Discov 2002; 1: 939-950
  • 19 Bronte V, Zanovello P. Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol 2005; 5: 641-654
  • 20 Kelleher ZT, Potts EN, Brahmajothi MV. et al. NOS 2 regulation of LPS-induced airway inflammation via S-nitrosylation of NF-{kappa}B p65. Am J Physiol Lung Cell Mol Physiol 2011; 301: L327-L333
  • 21 Arbab M, Tahir S, Niazi MK. et al. TNF-alpha Genetic Predisposition and Higher Expression of Inflammatory Pathway Components in Keratoconus. Invest Ophthalmol Vis Sci 2017; 58: 3481-3487
  • 22 Beeharry N, Chambers JA, Faragher RGA. et al. Analysis of cytokine-induced NO-dependent apoptosis using RNA interference or inhibition by 1400W. Nitric Oxide 2004; 10: 112-118
  • 23 Zhang G, Li X, Sheng C. et al. Macrophages activate iNOS signaling in adventitial fibroblasts and contribute to adventitia fibrosis. Nitric Oxide 2016; 61: 20-28
  • 24 Bordon-Graciani AP, Dias-Melicio LA, Acorci-Valério MJ. et al. High expression of human monocyte iNOS mRNA induced by Paracoccidioides brasiliensis is not associated with increase in NO production. Microbes Infect 2012; 14: 1049-1053
  • 25 Takeda N, OʼDea EL, Doedens A. et al. Differential activation and antagonistic function of HIF-α isoforms in macrophages are essential for NO homeostasis. Genes Dev 2010; 24: 491-501
  • 26 Melillo G, Taylor LS, Brooks A. et al. Regulation of inducible nitric oxide synthase expression in IFN-gamma-treated murine macrophages cultured under hypoxic conditions. J Immunol 1996; 157: 2638-2644
  • 27 Marletta MA. Nitric oxide synthase: aspects concerning structure and catalysis. Cell 1994; 78: 927-930
  • 28 Kleinert H, Wallerath T, Fritz G. et al. Cytokine induction of NO synthase II in human DLD-1 cells: roles of the JAK-STAT, AP-1 and NF-kappaB-signaling pathways. Br J Pharmacol 1998; 125: 193-201
  • 29 Szczesniak MW, Kabza M, Karolak JA. et al. KTCNlncDB-a first platform to investigate lncRNAs expressed in human keratoconus and non-keratoconus corneas. Database (Oxford) 2017; DOI: 10.1093/database/baw168.
  • 30 Rees DD, Palmer RM, Schulz R. et al. Characterization of three inhibitors of endothelial nitric oxide synthase in vitro and in vivo. Br J Pharmacol 1990; 101: 746-752
  • 31 Santhanam L, Lim HK, Lim HK. et al. Inducible NO synthase-dependent S-nitrosylation and activation of arginase1 contribute to age-related endothelial dysfunction. Circ Res 2007; 101: 692-702
  • 32 Donnelly LE, Barnes PJ. Expression and regulation of inducible nitric oxide synthase from human primary airway epithelial cells. Am J Respir Cell Mol Biol 2002; 26: 144-151
  • 33 Xia Y, Krukoff TL. Estrogen induces nitric oxide production via activation of constitutive nitric oxide synthases in human neuroblastoma cells. Endocrinology 2004; 145: 4550-4557
  • 34 Wang Y, Huang X, Cang H. et al. The endogenous reactive oxygen species promote NF-kappaB activation by targeting on activation of NF-kappaB-inducing kinase in oral squamous carcinoma cells. Free Radic Res 2007; 41: 963-971
  • 35 Chwa M, Atilano SR, Reddy V. et al. Increased stress-induced generation of reactive oxygen species and apoptosis in human keratoconus fibroblasts. Invest Ophthalmol Vis Sci 2006; 47: 1902-1910