CC BY-NC-ND 4.0 · Planta Medica International Open 2020; 07(03): e88-e99
DOI: 10.1055/a-1159-4242
Original Papers

Anti-inflammatory Potential of Macamides Isolated from Yellow Tubers of Mashua (Tropaeolum Tuberosum)

1   Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid, Madrid, Spain
2   Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, University Complutense of Madrid, Madrid, Spain
,
María Rodríguez Coballes
1   Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid, Madrid, Spain
,
Giulia Potente
3   Department for Life Quality Studies, University of Bologna, Rimini, Italy
,
Ángel Rumbero Sánchez
1   Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid, Madrid, Spain
› Author Affiliations
Funding: This work was supported by the Fundación de la Universidad Autónoma de Madrid (FUAM).

Abstract

Although Tropaeolum tuberosum tubers have been consumed cooked as a folk remedy for the treatment of skin, lungs, liver and kidneys diseases, these uses have very limited scientific basis. Therefore, this article develops a phytochemical analysis of the yellow tubers of T. tuberosum with the objective to assess whether the isolated compounds have anti-inflammatory potential in the CCD-1109Sk, MRC-5 and RWPE-1 cell lines. We performed an extraction of T. tuberosum tubers using different organic solvents, followed by a bioguided chromatographic separation. Four macamides were identified by LC/MS techniques, but only N-benzyllinoleamide (1) and N-benzyloleamide (2) were isolated and elucidated by NMR/MS techniques, given that they were present in a larger proportion in the tubers. The anti-inflammatory potential of macamides was evaluated by the inhibition of NF-κB and STAT3 activation. Both compounds displayed inhibition of NF-κB activation with IC50 values of 2.28±0.54 µM; 3.66±0.34 µM and 4.48±0.29 µM for compound (1) and 6.50±0.75 µM; 7.74±0.19 µM and 8.37 ±0.09 µM for compound (2) in CCD-1109Sk, MRC-5 and RWPE-1 cell lines, respectively. Moreover, both compounds inhibited the STAT3 activation with IC50 of 0.61±0.76 µM; 1.24±0.05 µM and 2.10±0.12 µM for compound (1) and 5.49±0.31 µM; 7.73 ±0.94 µM and 7.79±0.30 µM for compound (2). Therefore, isolated macamides of T. tuberosum tubers showed promising anti-inflammatory effects, suggesting a possible beneficial use to combat inflammatory processes of skin, lung and prostate.

Supporting Information



Publication History

Received: 29 January 2020
Received: 02 April 2020

Accepted: 16 April 2020

Article published online:
18 May 2020

© 2020. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • References

  • 1 Hunter P. The inflammation theory of disease. EMBO Rep 2012; 13: 968-970
  • 2 Krishnamoorthy S, Honn KV. Inflammation and disease progression. Cancer Metastasis Rev 2006; 25: 481-491
  • 3 Rumel C. Inflammatory transcription factors as activation markers and functional readouts in immune-to-brain communication. Brain Behav Immun 2016; 54: 1-14
  • 4 Vallabhapurapu S, Karin M. Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol 2009; 27: 693-733
  • 5 Hayden MS, Ghosh S. Shared principles in NF-kappaB signaling. Cell 2008; 132: 344-362
  • 6 Levy DE, Lee CK. What does Stat3 do?. J Clin Invest 2002; 109: 1143-1148
  • 7 Herrmann A, Vogt M, Mönnigmann M, Clahsen T, Sommer U, Haan S, Poli V, Heinrich PC, Müller-Newen G. Nucleocytoplasmic shuttling of persistently activated STAT3. J Cell Sci 2007; 120: 3249-3261
  • 8 Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: A leading role for STAT3. Nat Rev Cancer 2009; 9: 798-809
  • 9 Yang J, Liao X, Agarwal MK, Barnes L, Auron PE, Stark GR. Unphosphorylated STAT3 accumulates in response to IL-6 and activates transcription by binding to NFkappaB. Genes Dev 2007; 21: 1396-1408
  • 10 Fan Y, Mao R, Yang J. NF-κB and STAT3 signaling pathways collaboratively link inflammation to cancer. Protein Cell 2013; 4: 176-185
  • 11 Bent S. Herbal Medicine in the United States: Review of efficacy, safety, and regulation. J Gen Intern Med 2008; 23: 854-859
  • 12 Tasneem S, Liu B, Li B, Choudhary MI, Wang W. Molecular pharmacology of inflammation: Medicinal plants as anti-inflammatory agents. Pharmacol Res 2019; 139: 126-140
  • 13 Apaza TL, Tena VP, Bermejo PB. Local/traditional uses, secondary metabolites and biological activities of Mashua (Tropaeolum tuberosum Ruíz & Pavón). J Ethnopharmacol 2020; 247: 112152
  • 14 Fernández HAM, Rodríguez REF. Etnobotánica del Peru Pre-Hispano. 1st Edition. Trujillo: Ediciones Herbarium Truxillense (HUT); 2007: 133-134
  • 15 De Lucca DM, Zalles AJ. Flora Medicinal Boliviana. 1st Edition. Cochabamba: Los Amigos del Libro; 1992: 401
  • 16 De Lucca DM, Zalles AJ. Utasan Utjir Qollanaka. Medicinas junto a nuestra casa. 1st Edition. La Paz: Agencia Española de Cooperación Internacional; 2006: 88
  • 17 Espinosa P, Abad J, Vaca R. Diagnostico de las limitantes de producción y consumo de las raíces y tubérculos andinos en Ecuador. 1st Edition.. Ecuador: Instituto Nacional de Investigaciones Agropecuarias (INIAP);; 1994. pp. irr
  • 18 Monteros Altamirano AR. Estudio de la Variación Morfológica e Isoenzimatica de 78 entradas de Mashua (Tropaeolum tuberosum R & P.). “Santa Catalina”-INIAP [dissertation]. Ecuador: Universidad Central de Ecuador;; 1996
  • 19 Chirinos R, Campos D, Costa N, Arbizu C, Pedreschi R, Larondelle Y. Phenolic profiles of Andean mashua (Tropaeolum tuberosum Ruiz & Pavón) tubers: Identification by HPLC-DAD and evaluation of their antioxidant activity. Food Chem 2008; 106: 1285-1298
  • 20 Chirinos R, Campos D, Arbizu C, Rogez H, Rees JF, Larondelle Y, Noratto G, Cisneros-Zevallos L. Effect of genotype, maturity stage and post-harvest storage on phenolic compounds, carotenoid content and antioxidant capacity, of Andean mashua tubers (Tropaeolum tuberosum Ruiz & Pavón). J Sci Food Agric 2007; 87: 473-446.
  • 21 Chirinos R, Campos D, Betalleluz I, Giusti MM, Schartz SJ, Tian Q, Pedreschi R, Larondelle Y. High performance liquid chromatography with photodiode array detection (HPLC/DAD)/HPLC-Mass spectrometry (MS) profiling of anthocyanins from Andean Mashua tubers (Tropaeolum tuberosum Ruíz & Pavón) and their contribution to the overall antioxidant activity. J Agr Food Chem 2006; 54: 7089-7097
  • 22 Martín JC, Ligia HB. Glucosinolate composition of Colombian accessions of Mashua (Tropaeolum tuberosum Ruíz & Pavón), structural elucidation of the predominant glucosinolate and assessment of its antifungal activity. J Sci Food Agric 2016; 96: 4702-4712
  • 23 Ramallo RZ. Análisis exploratorio de los ácidos grasos del Isaño (Tropaeolum tuberosum). Investigación & Desarrollo 2004; 4: 69-74
  • 24 Apaza TL, Tena VP, Serban AM, Alonso NMJ, Rumbero A. Alkamides from Tropaeolum tuberosum inhibit inflammatory response induced by TNF-α and NF-κB. J Ethnopharmacol 2019; 235: 199-205
  • 25 White J. Notes on the Biology of Oxalis tuberosa and Tropaeolum tuberosum. Thesis in Biology. Harvard College 1975; 96
  • 26 Terrazas F, Valdivia F. Spatial dynamics of in situ conservation: handling the genetic diversity of Andean tubers in mosaic systems. Plant Genet Resour Newsl 1998; 114: 9-15
  • 27 Johns T, Kitts WD, Newsome F, Towers GHN. Anti-reproductive and other medicinal effects of Tropaeolum tuberosum. J Ethnopharmacol 1982; 5: 149-161
  • 28 García H. Flora medicinal de Colombia. Botánica Médica. Instituto de Ciencias Naturales. Universidad Nacional; Bogotá: 1975: 15-18
  • 29 Herrera FL. Contribución a la flora del departamento del Cuzco. Perú; Primera parte. Universidad del Cuzco; Cuzco, Perú: 1921
  • 30 Chan FKM, Moriwaki K, De Rosa MJ. Detection of Necrosis by Release of Lactate Dehydrogenase (LDH) Activity. Methods Mol Biol 2013; 979: 65-70
  • 31 Roehm NW, Rodgers GH, Hatfield SM, Glasebrook AL. An improved colorimetric assay for cell proliferation and viability utilizing the tetrazolium salt XTT. J Immunol Methods 1991; 142: 257-265
  • 32 de Sousa Andrade IP, Folegatti MV, Almeida Santos ON, Fanaya Junior ED, Barison A, da Conceição Santos AD. Fatty acid composition of Jatropha curcas seeds under different agronomical conditions by means of 1H HR-MAS NMR. Biomass Bioenerg 2017; 101: 30-34
  • 33 Liu H, Jin W, Fu C, Dai P, Yu Y, Huo Q, Yu L. Discovering anti-osteoporosis constituents of maca (Lepidium meyenii) by combined virtual screening and activity verification. Food Res Int 2015; 77: 215-220
  • 34 Huang YJ, Peng XR, Qiu MH. Progress on the chemical constituents derived from glucosinolates in maca (Lepidium meyenii). Nat Prod Bioprospect 2018; 8: 405-412
  • 35 Chen JJ, Gong PF, Liu YL, Liu BY, Eggert D, Guo YH, Zhao MX, Zhao QS, Zhao B. Postharvest ultrasound-assisted freeze-thaw pre-treatment improves the drying efficiency, physicochemical properties, and macamide biosynthesis of maca (Lepidium meyenii). J Food Sci 2018; 83: 966-974
  • 36 Arnott JA, Planey SL. The influence of lipophilicity in drug discovery and design. Expert Opin Drug Discov 2012; 7: 863-875
  • 37 Vetten MA, Tlotleng N, Rascher DT, Skepu A, Keter FK, Boodhia K, Koekmoer LA, Andreaos C, Tshikhudo R, Gulumian M. Label-free in vitro toxicity and uptake assessment of citrate stabilised gold nanoparticles in three cell lines. Part Fibre Toxicol 2013; 10: 1-15.
  • 38 Hawkins RA, Sangster K, Arends MJ. Apoptotic death of pancreatic cancer cells induced by polyunsaturated fatty acids varies with double bond number and involves an oxidative mechanism. J Pathol 1998; 185: 61-70
  • 39 Nagase M, Oto J, Sugiyama S, Yube K, Takaishi Y, Sakato N. Apoptosis induction in HL-60 cells and inhibition of topoisomerase II by triterpene celastrol. Biosci Biotechnol Biochem 2003; 67: 1883-1887
  • 40 Sancho R, Calzado MA, Di Marzo V, Appendino G, Muñoz E. Anandamide inhibits nuclear factor-κB activation through a cannabinoid receptor-independent pathway. Mol Pharmacol 2003; 63: 429-438
  • 41 Simmonds RE, Foxwell BM. Signalling, inflammation and arthritis: NF-kappaB and its relevance to arthritis and inflammation. Rheumatology 2008; 47: 584-590
  • 42 Ibrahim A, Mbodji K, Hassan A, Aziz M, Boukhettala N, Coëffier M, Savoye G, Déchelotte P, Marion-Letellier R. Anti-inflammatory and anti-angiogenic effect of long chain n-3 polyunsaturated fatty acids in intestinal microvascular endothelium. Clin Nutr 2011; 30: 678-687
  • 43 Marion-Letellier R, Savoye G, Ghosh S. Polyunsaturated fatty acids and inflammation. IUBMB Life 2015; 67: 659-667
  • 44 Mielecki M, Lesyng B. Cinnamic acid derivatives as inhibitors of oncogenic protein kinases-structure, mechanisms and biomedical effects. Curr Med Chem 2016; 23: 954-982
  • 45 Chen Q, Lv J, Yang W, Xu B, Wang Z, Yu Z, Wu J, Yang Y, Han Y. Targeted inhibition of STAT3 as a potential treatment strategy for atherosclerosis. Theranostics 2019; 9: 6424-6442
  • 46 Fang P, Hwa V, Rosenfeld RG. Interferon-gamma-induced dephosphorylation of STAT3 and apoptosis are dependent on the mTOR pathway. Exp Cell Res 2006; 312: 1229-1239
  • 47 Yan D, Yang Q, Shi M, Zhong L, Wu C, Meng T, Yin H, Zhou J. Polyunsaturated fatty acids promote the expansion of myeloid-derived suppressor cells by activating the JAK/STAT3 pathway. Eur J Immunol 2013; 43: 2943-2955
  • 48 Calder PC, Grimble RF. Polyunsaturated fatty acids, inflammation and immunity. Eur J Clin Nutr 2002; 56: S14-S19
  • 49 Wu H, Kelley CJ, Pino-Figueroa A, Vu HD, Maher TJ. Macamides and their synthetic analogues: Evaluation of in vitro FAAH inhibition. Bioorg Med Chem 2013; 21: 5188-5197
  • 50 Gugnani KS, Vu N, Rondón-Ortiz AN, Böhlke M, Maher TJ, Pino-Figueroa AJ. Neuroprotective activity of macamides on manganese-induced mitochondrial disruption in U-87 MG glioblastoma cells. Toxicol Appl Pharmacol 2018; 340: 67-76
  • 51 Yang C, Guo ZB, Du ZM, Yang HY, Bi YJ, Wang GQ, Tan YF. Cellular fatty acids as chemical markers for differentiation of Acinetobacter baumannii and Acinetobacter calcoaceticus. BES 2012; 56: 5-51
  • 52 Weislow OS, Kiser R, Fine DL, Bader J, Shoemaker RH, Boyd MR. New soluble-formazan assay for HIV-1 cytopathic effects: application to high-flux screening of synthetic and natural products for AIDS-antiviral activity. JNCI 1989; 81: 577-586