Aktuelle Ernährungsmedizin 2020; 45(03): 182-192
DOI: 10.1055/a-1179-9594
Positionspapier
© Georg Thieme Verlag KG Stuttgart · New York

ESPEN-Expertenerklärungen und praktischer Leitfaden für das Ernährungsmanagement von Patienten mit SARS-CoV-2-Infektion

ESPEN Expert Statements and Practical Guidance for Nutritional Management of Individuals with SARS-CoV-2 Infection
Rocco Barazzoni*
1   Institut für Medizin, Chirurgie und Gesundheitswissenschaften, Universität Triest, Triest, Italien
,
Stephan C. Bischoff*+
2   Institut für Ernährungsmedizin, Universität Hohenheim, Stuttgart, Deutschland
,
Joao Breda
3   Europäisches Büro der WHO für die Prävention und Bekämpfung nichtübertragbarer Krankheiten, Regionalbüro der Weltgesundheitsorganisation (WHO) für Europa, Moskau, Russische Föderation
,
Kremlin Wickramasinghe
3   Europäisches Büro der WHO für die Prävention und Bekämpfung nichtübertragbarer Krankheiten, Regionalbüro der Weltgesundheitsorganisation (WHO) für Europa, Moskau, Russische Föderation
,
Zeljko Krznaric
4   Abteilung für Gastroenterologie, Hepatologie und Ernährung, Universitätsklinikum Zagreb, Zagreb, Kroatien
,
Dorit Nitzan
5   Koordinator Gesundheitsnotfälle und Betriebsmanagement, Regionalbüro der Weltgesundheitsorganisation (WHO) für Europa, Kopenhagen, Dänemark
,
Matthias Pirlich
6   Praxis an der Kaisereiche, Endokrinologie, Gastroenterologie & Klinische Ernährung, Berlin, Deutschland
,
Pierre Singer
7   Abteilung für Allgemeine Intensivmedizin und Institut für Ernährungsforschung, Rabin Medical Center, Beilinson-Krankenhaus, Sackler School of Medicine, Universität Tel Aviv, Tel Aviv, Israel
,
unterstützt vom ESPEN Council › Author Affiliations
Further Information

Publication History

Publication Date:
16 June 2020 (online)

Zusammenfassung

Die COVID-19-Pandemie stellt Patienten und Gesundheitssysteme weltweit vor außergewöhnliche Herausforderungen und Bedrohungen. Akute Atemwegserkrankungen, die eine intensivmedizinische Therapie erfordern, sind eine Hauptursache für Morbidität und Mortalität bei COVID-19-Patienten. Es wird berichtet, dass immungeschwächten Personen, zu denen ältere Menschen, polymorbide Patienten sowie unterernährte Personen im Allgemeinen gehören, eine schlechtere Prognose und eine höhere Mortalität droht. Intensivmedizinische Behandlung, Polymorbidität und höheres Alter sind mit einem hohen Risiko für Unter- und Mangelernährung assoziiert, was per se einen relevanten Risikofaktor für eine höhere Morbidität und Mortalität bei chronischen und akuten Erkrankungen darstellt. Wichtig ist auch, dass längere Aufenthalte auf Intensivstation, wie sie für die Stabilisierung von COVID-19-Patienten häufiger erforderlich sind, und längere Aufenthalte auf der Intensivstation per se Unter- und Mangelernährung verursachen oder verschlechtern. Dabei kommt es auch zu schweren Verlusten von Skelettmuskelmasse und -funktion und folglich zur Behinderung, zu eingeschränkter Lebensqualität sowie zusätzlicher Morbidität. Prävention, Diagnostik und Therapie von Unter- und Mangelernährung sollten daher routinemäßig bei der Behandlung von COVID-19-Patienten berücksichtigt werden. Im vorliegenden Dokument möchte die Europäische Gesellschaft für klinische Ernährung und Stoffwechsel (ESPEN) anhand von 10 praktischen Empfehlungen präzise Vorschläge für das Ernährungsmanagement von COVID-19-Patienten anbieten. Die praktischen Anleitungen betreffen Patienten auf Intensivstation und Personen mit höherem Alter und Polymorbidität, die mit Mangelernährung und deren negativen Auswirkungen auf das Überleben assoziiert sind.

Abstract

The COVID-19 pandemics is posing unprecedented challenges and threats to patients and healthcare systems worldwide. Acute respiratory complications that require intensive care unit (ICU) management are a major cause of morbidity and mortality in COVID-19 patients. Patients with worst outcomes and higher mortality are reported to include immunocompromised subjects, namely older adults and polymorbid individuals and malnourished people in general. ICU stay, polymorbidity and older age are all commonly associated with high risk for malnutrition, representing per se a relevant risk factor for higher morbidity and mortality in chronic and acute disease. Also importantly, prolonged ICU stays are reported to be required for COVID-19 patients stabilization, and longer ICU stay may per se directly worsen or cause malnutrition, with severe loss of skeletal muscle mass and function which may lead to disability, poor quality of life and additional morbidity. Prevention, diagnosis and treatment of malnutrition should therefore be routinely included in the management of COVID-19 patients. In the current document, the European Society for Clinical Nutrition and Metabolism (ESPEN) aims at providing concise guidance for nutritional management of COVID-19 patients by proposing 10 practical recommendations. The practical guidance is focused to those in the ICU setting or in the presence of older age and polymorbidity, which are independently associated with malnutrition and its negative impact on patient survival.

* haben gleichermaßen zum Manuskript beigetragen


+ übersetzt von Stephan C. Bischoff


 
  • Literatur

  • 1 Zhu N, Zhang D, Wang W. et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020; 382: 727-733
  • 2 Chen N, Zhou M, Dong X. et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020; 395: 507-513
  • 3 Huang C, Wang Y, Li X. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395: 497-500
  • 4 Bouadma L, Lescure FX, Lucet JC. et al. Severe SARS-CoV-2 infections: practical considerations and management strategy for intensivists. Intensive Care Med 2020; 46: 579-582
  • 5 Zhou F, Yu T, Du R. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020; 395: 1054-1062
  • 6 Singer P, Blaser AR, Berger MM. et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin Nutr 2019; 38: 48-79
  • 7 Gomes F, Schuetz P, Bounoure L. et al. ESPEN guideline on nutritional support for polymorbid internal medicine patients. Clin Nutr 2018; 37: 336-353
  • 8 Volkert D, Beck AM, Cederholm T. et al. ESPEN guideline on clinical nutrition and hydration in geriatrics. Clin Nutr 2019; 38: 10-47
  • 9 Cederholm T, Barazzoni R, Austin P. et al. ESPEN guidelines on definitions and terminology of clinical nutrition. Clin Nutr 2017; 36: 49-64
  • 10 Cederholm T, Jensen GL, Correia MITD. et al. GLIM criteria for the diagnosis of malnutrition – A consensus report from the global clinical nutrition community. Clin Nutr 2019; 38: 1-9
  • 11 Short KR, Kedzierska K, van de Sandt CE. Back to the Future: Lessons Learned From the 1918 Influenza Pandemic. Front Cell Infect Microbiol 2018; 8: 343
  • 12 Reyes L, Arvelo W, Estevez A. et al. Population-based surveillance for 2009 pandemic influenza A (H1N1) virus in Guatemala, 2009. Influenza Other Respir. Viruses 2010; 4: 129-140
  • 13 Maruyama T, Fujisawa T, Suga S. et al. Outcomes and Prognostic Features of Patients With Influenza Requiring Hospitalization and Receiving Early Antiviral Therapy: A Prospective Multicenter Cohort Study. Chest 2016; 149: 526-534
  • 14 World Health Organization. Obesity – Data and Statistics. Im Internet: Stand: 23. März 2020 http://www.euro.who.int/en/health-topics/noncommunicable-diseases/obesity/data-and-statistics
  • 15 Zhang L, Liu Y. Potential interventions for novel coronavirus in China: A systematic review. J Med Virol 2020; 92: 479-490
  • 16 Papadimitriou-Olivgeris M, Gkikopoulos N, Wüst M. et al. Predictors of mortality of influenza virus infections in a Swiss Hospital during four influenza seasons: Role of quick sequential organ failure assessment. Eur J Intern Med 2019; 74: 86-91
  • 17 Cannell JJ, Vieth R, Umhau JC. et al. Epidemic influenza and vitamin D. Epidemiol Infect 2006; 134: 1129-1140
  • 18 Mascitelli L, Grant WB, Goldstein MR. Obesity, influenza virus infection, and hypovitaminosis D. J Infect Dis 2012; 206: 1481-1482
  • 19 Goncalves-Mendes N, Talvas J, Dualé C. et al. Impact of Vitamin D Supplementation on Influenza Vaccine Response and Immune Functions in Deficient Elderly Persons: A Randomized Placebo-Controlled Trial. Front Immunol 2019; 10: 65
  • 20 Preidis GA, McCollum ED, Mwansambo C. et al. Pneumonia and malnutrition are highly predictive of mortality among African children hospitalized with human immunodeficiency virus infection or exposure in the era of antiretroviral therapy. J Pediatr 2011; 159: 484-489
  • 21 Villar LM, Del Campo JA, Ranchal I. et al. Association between vitamin D and hepatitis C virus infection: a meta-analysis. World J Gastroenterol 2013; 19: 5917-5924
  • 22 Nanri A, Nakamoto K, Sakamoto N. et al. Association of serum 25-hydroxyvitamin D with influenza in case-control study nested in a cohort of Japanese employees. Clin Nutr 2017; 36: 1288-1293
  • 23 Lee MD, Lin CH, Lei WT. et al. Does Vitamin D Deficiency Affect the Immunogenic Responses to Influenza Vaccination? A Systematic Review and Meta-Analysis. Nutrients 2018; 10: 409
  • 24 Nonnecke BJ, McGill JL, Ridpath JF. et al. Acute phase response elicited by experimental bovine diarrhea virus (BVDV) infection is associated with decreased vitamin D and E status of vitamin‐replete preruminant calves. J Dairy Sci 2014; 97: 5566-5579
  • 25 West CE, Sijtsma SR, Kouwenhoven B. et al. Epithelia‐damaging virus infections affect vitamin A status in chickens. J Nutr 1992; 122: 333-339
  • 26 Somarriba G, Neri D, Schaefer N. et al. The effect of aging, nutrition, and exercise during HIV infection. HIV AIDS (Auckl) 2010; 2: 191-201
  • 27 Semba RD, Tang AM. Micronutrients and the pathogenesis of human immunodeficiency virus infection. Br J Nutr 1999; 81: 181-189
  • 28 Chen P, Mao L, Nassis GP. et al. Wuhan coronavirus (2019-nCoV): The need to maintain regular physical activity while taking precautions. J Sport Health Sci 2020; 9: 103-104
  • 29 Bendavid I, Singer P, Theilla M. et al. NutritionDay ICU: A 7 year worldwide prevalence study of nutrition practice in intensive care. Clin Nutr 2017; 36: 1122-1129
  • 30 Reeves A, White H, Sosnowski K. et al. Energy and protein intakes of hospitalized patients with acute respiratory failure receiving non-invasive ventilation. Clin Nutr 2014; 33: 1068-1073
  • 31 Kogo M, Nagata K, Morimoto T. et al. Enteral nutrition is a risk factor for airway complications in subjects undergoing noninvasive ventilation for acute respiratory failure. Respir Care 2017; 62: 459-467
  • 32 Leder SB, Siner JM, Bizzaro MJ. et al. Oral alimentation in neonatal and adult populations requiring high-flow oxygen via nasal cannula. Dysphagia 2016; 31: 154-159
  • 33 Terzi N, Darmon M, Reignier J. et al. OUTCOMEREA study group. Initial nutritional management during noninvasive ventilation and outcomes: a retrospective cohort study. Crit Care 2017; 21: 293
  • 34 Frat JP, Thille AW, Mercat A. et al. High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. N Engl J Med 2015; 372: 2185-2196
  • 35 Singer P, Rattanachaiwong S. To eat or to breathe? The answer is both! Nutritional management during noninvasive ventilation. Crit Care 2018; 6: 22
  • 36 Peterson SJ, Tsai AA, Scala CM. et al. Adequacy of oral intake in critically ill patients 1 week after extubation. J Am Diet Assoc 2010; 110: 427e33
  • 37 Skoretz SA, Flowers HL, Martino R. The incidence of dysphagia following endotracheal intubation: a systematic review. Chest 2010; 137: 665-673
  • 38 Macht M, Wimbish T, Clark B. et al. Postextubation dysphagia is persistent and associated with poor outcomes in survivors of critical illness. Crit Care 2011; 15: R231
  • 39 Macht M, White D, Moss M. Swallowing dysfunction after critical illness. Chest 2014; 146: 1681-1689
  • 40 Zuercher P, Moret CS, Dziewas R. et al. Dysphagia in the intensive care unit: epidemiology, mechanisms, and clinical management. Crit Care 2019; 23: 103
  • 41 Kruser JM, Prescott HC. Dysphagia after acute respiratory distress syndrome: another lasting legacy of critical illness. Ann Am Thorac Soc 2017; 14: 307-308
  • 42 Pryor L, Ward E, Cornwell A. et al. Patterns of return to oral intake and decanulation post tracheotomy across clinical populations in an acute inpatient setting. Int J Lang Commun Disord 2016; 51: 556-567
  • 43 Inoue S, Hatakeyama J, Kondo Y. et al. Post-intensive care syndrome: its pathophysiology, prevention, and future directions. Acute Med Surg 2019; 6: 233-246
  • 44 Landi F, Camprubi-Robles M. et al. Muscle loss: The new malnutrition challenge in clinical practice. Clin Nutr 2019; 38: 2113-2120
  • 45 Jones C, Eddleston J, McCairn A. et al. Improving rehabilitation after critical illness through outpatient physiotherapy classes and essential amino acid supplement: a randomized controlled trial. J Crit Care 2015; 30: 901-907
  • 46 Bear DE, Langan A, Dimidi E. et al. β-Hydroxy-β-methylbutyrate and its impact on skeletal muscle mass and physical function in clinical practice: a systematic review and meta-analysis. Am J Clin Nutr 2019; 109: 1119-1132