Aktuelle Ernährungsmedizin 2021; 46(02): 95-104
DOI: 10.1055/a-1219-7355
Übersicht

Chronobiologie und Ernährung

Chronobiology and Diet
Ute Alexy
1   Institut für Ernährungs- und Lebensmittelwissenschaften, Rheinische Friedrich-Wilhelms-Universität Bonn
,
Nicole Jankovic
1   Institut für Ernährungs- und Lebensmittelwissenschaften, Rheinische Friedrich-Wilhelms-Universität Bonn
,
Sarah Schmitting
2   Abteilung für Allgemeinmedizin, Ruhr-Universität Bochum
,
Anette E. Buyken
3   Public Health Nutrition, Universität Paderborn, Fakultät für Naturwissenschaften
› Author Affiliations

Zusammenfassung

Hintergrund Die Bedeutung der Zusammenhänge zwischen Chronobiologie und Ernährung ist zunehmend Gegenstand der Forschung. Dabei geht es um die Frage, inwieweit es nicht nur relevant ist, was wir essen, sondern auch wann wir was essen und inwieweit wir gegen unsere innere Uhr essen.

Methodik In dieser Übersichtsarbeit wird der aktuelle Kenntnisstand zur Relevanz verschiedener Aspekte zirkadianer Ernährungsmuster (Zeitpunkt und Häufigkeit der Nahrungsaufnahme, das Auslassen des Frühstücks, die Beschränkung des Verzehrs auf bestimmte Tageszeiten) sowie der Zusammenhang mit dem individuellen Chronotyp für die Entstehung ernährungsmitbedingter Krankheiten aus ernährungsepidemiologischer Sicht dargestellt.

Ergebnisse Nach dem derzeitigen Kenntnisstand könnte es für die langfristige Gesundheit von Vorteil sein, wenn eine hohe Energiezufuhr und der Verzehr großer Mengen an Kohlenhydraten mit hohem glykämischen Index am Abend vermieden werden. Die derzeitige Evidenz aus Beobachtungs- und Interventionsstudien zum Zusammenhang zwischen Frühstück und Körpergewichtsmanagement ist widersprüchlich. Eine Aussage für eine empfohlene Anzahl von Verzehrsgelegenheiten kann zum derzeitigen Stand nicht getroffen werden. Bislang fehlen ausreichend qualitativ hochwertige Humanstudien, die eine Reduktion des Zeitfensters für die Nahrungsaufnahme als vorteilhaft für eine Gewichtsreduktion nachweisen. Grundsätzlich erscheint es erstrebenswert, die individuelle Ernährungsweise an den eigenen Chronotyp im Sinne einer personalisierten Ernährung anzupassen.

Schlussfolgerungen Weitere Forschung, basierend auf prospektiven Langzeitstudien sowie kontrollierten randomisierten Interventionsstudien sind notwendig, um die Rolle der zirkadianen Ernährungsmuster in der Prävention von ernährungsmitbedingten Krankheiten zu klären. Insbesondere sollte der individuelle Chronotyp bei der Konzeption von zukünftigen Studien in diesem Feld und der Interpretation von Ergebnissen mit berücksichtigt werden.

Abstract

Background Studying the association between chronobiology and nutrition is of increasing interest. The important question is not only what we eat but also when we eat and in how far we do eat in accordance with our biological clock.

Methods We summarized current evidence from a nutritional epidemiological perspective about the relevance of different circadian dietary patterns (time and frequency of dietary intake, breakfast skipping and time restricted feeding) and the association between individual chronotype and the development of body weight and nutrition related chronic diseases.

Results From this narrative review it appears that avoiding high energy and carbohydrate intakes, especially carbohydrates with high Glycamic index, in the evening may support the maintenance of long-term health. The current evidence from observational and intervention studies on the relationship between breakfast and body weight management is contradictory. Adherence to a circadian eating rhythm aligned with the individual chronotype seems to be beneficial for body weight management and therefore the prevention of other chronic diseases. There is insufficient knowledge regarding the amount of eating occasions one should adhere to and the right amount of time between the first and the last meal in order to influence weight reduction.

Conclusion The field of chronobiology and nutrition is emerging and holds path breaking results. However, further research especially prospective cohort studies providing repeated measurements and randomized controlled trials are necessary to interpret the impact of circadian dietary patterns on the prevention of diet related chronic diseases. The conception and interpretation of future studies regarding chronobiology and diet should account for the individual chronotype.



Publication History

Article published online:
15 April 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Laermans J, Depoortere I. Chronobesity: role of the circadian system in the obesity epidemic. Obesity Reviews 2016; 17: 108-125
  • 2 Garaulet M, Madrid JA. Chronobiological aspects of nutrition, metabolic syndrome and obesity. Adv Drug Deliv Rev 2010; 62: 967-978
  • 3 Roenneberg T. Wie wir ticken. Die Bedeutung der Chronobiologie für unser Leben. Köln: DuMont; 2012
  • 4 Aschoff J. Temporal orientation: circadian clocks in animals and humans. Anim Behav 1989; 37: 881-896
  • 5 Froy O. Metabolism and circadian rhythms – implications for obesity. Endocr Rev 2010; 31: 1-24
  • 6 Cagampang FR, Bruce KD. The role of the circadian clock system in nutrition and metabolism. Br J Nutr 2012; 108: 381-392
  • 7 Zerón-Rugerio MF, Cambras T, Izquierdo-Pulido M. Social Jet Lag Associates Negatively with the Adherence to the Mediterranean Diet and Body Mass Index among Young Adults. Nutrients 2019; 11: 1756
  • 8 McHill AW, Melanson EL, Higgins J. et al. Impact of circadian misalignment on energy metabolism during simulated nightshift work. Proc Natl Acad Sci USA 2014; 111: 17302-17307
  • 9 Antunes LC, Levandovski R, Dantas G. et al. Obesity and shift work: Chronobiological aspects. Nutr Res Rev 2010; 23: 155-168
  • 10 Wittmann M, Dinich J, Merrow M. et al. Social jetlag: Misalignment of biological and social time. Chronobiol Int 2006; 23: 497-509
  • 11 Xiao Q, Garaulet M, Scheer FAJL. Meal timing and obesity: Interactions with macronutrient intake and chronotype. Int J Obes (Lond) 2019; 43: 1701-1711
  • 12 Roßbach S, Diederichs T, Nöthlings U. et al. Relevance of chronotype for eating patterns in adolescents. Chronobiol Int 2018; 35: 336-347
  • 13 Roenneberg T, Kuehnle T, Juda M. et al. Epidemiology of the human circadian clock. Sleep Med Rev 2007; 11: 429-438
  • 14 Asher G, Sassone-Corsi P. Time for food: The intimate interplay between nutrition, metabolism, and the circadian clock. Cell 2015; 161: 84-92
  • 15 Baron KG, Reid KJ. Circadian misalignment and health. Int Rev Psychiatry 2014; 26: 139-154
  • 16 Challet E. Keeping circadian time with hormones. Diabetes Obes Metab 2015; 17 (Suppl. 01) 76-83
  • 17 Qian J, Morris CJ, Caputo R. et al. Sex differences in the circadian misalignment effects on energy regulation. Proc Natl Acad Sci USA 2019; 116: 23806-23812
  • 18 Scheer FAJL, Morris CJ, Shea SA. The internal circadian clock increases hunger and appetite in the evening independent of food intake and other behaviors. Obesity (Silver Spring) 2013; 21: 421-423
  • 19 Poggiogalle E, Jamshed H, Peterson CM. Circadian regulation of glucose, lipid, and energy metabolism in humans. Metab Clin Exp 2018; 84: 11-27
  • 20 Mattson MP, Allison DB, Fontana L. et al. Meal frequency and timing in health and disease. Proc Natl Acad Sci USA 2014; 111: 16647-16653
  • 21 Aschoff J. Circadian timing. Ann NY Acad Sci 1984; 423: 442-468
  • 22 Macdiarmid J, Loe J, Craig LCA. et al. Meal and snacking patterns of school-aged children in Scotland. Eur J Clin Nutr 2009; 63: 1297-1304
  • 23 Kerr MA, Rennie KL, McCaffrey TA. et al. Snacking patterns among adolescents: a comparison of type, frequency and portion size between Britain in 1997 and Northern Ireland in 2005. Br J Nutr 2009; 101: 122-131
  • 24 Nicklas TA, Morales M, Linares A. et al. Children’s meal patterns have changed over a 21-year period: the Bogalusa Heart Study. J Am Diet Assoc 2004; 104: 753-761
  • 25 Jahns L, Siega-Riz AM, Popkin BM. The increasing prevalence of snacking among US children from 1977 to 1996. J Pediatr 2001; 138: 493-498
  • 26 Popkin BM, Duffey KJ. Does hunger and satiety drive eating anymore? Increasing eating occasions and decreasing time between eating occasions in the United States. Am J Clin Nutr 2010; 91: 1342-1347
  • 27 Templeman I, Gonzalez JT, Thompson D. et al. The role of intermittent fasting and meal timing in weight management and metabolic health. Proc Nutr Soc 2019; 79: 76-87
  • 28 Leech RM, Worsley A, Timperio A. et al. The role of energy intake and energy misreporting in the associations between eating patterns and adiposity. Eur J Clin Nutr 2018; 72: 142-147
  • 29 Kaisari P, Yannakoulia M, Panagiotakos DB. Eating Frequency and Overweight and Obesity in Children and Adolescents: A Meta-analysis. Pediatrics 2013; 131: 958-967
  • 30 Duffey KJ, Popkin BM. Causes of increased energy intake among children in the U.S., 1977–2010. Am J Prev Med 2013; 44: e1-8
  • 31 Taillie LS, Afeiche MC, Eldridge AL. et al. Increased Snacking and Eating Occasions Are Associated with Higher Energy Intake among Mexican Children Aged 2–13 Years. J Nutr 2015; 145: 2570-2577
  • 32 Evans EW, Jacques PF, Dallal GE. et al. The role of eating frequency on total energy intake and diet quality in a low-income, racially diverse sample of schoolchildren. Public Health Nutr 2015; 18: 474-481
  • 33 Bo S, de Carli L, Venco E. et al. Impact of snacking pattern on overweight and obesity risk in a cohort of 11- to 13-year-old adolescents. J Pediatr Gastroenterol Nutr 2014; 59: 465-471
  • 34 Cecil JE, Palmer CNA, Wrieden W. et al. Energy intakes of children after preloads: adjustment, not compensation. Am J Clin Nutr 2005; 82: 302-308
  • 35 Kahleova H, Lloren JI, Mashchak A. et al. Meal Frequency and Timing Are Associated with Changes in Body Mass Index in Adventist Health Study 2. J Nutr 2017; 147: 1722-1728
  • 36 Canuto R, da Silva Garcez A, Kac G. et al. Eating frequency and weight and body composition: A systematic review of observational studies. Public Health Nutr 2017; 20: 2079-2095
  • 37 St-Onge M-P, Ard J, Baskin ML. et al. Meal Timing and Frequency: Implications for Cardiovascular Disease Prevention: A Scientific Statement From the American Heart Association. Circulation 2017; 135: e96-e121
  • 38 Betts JA, Chowdhury EA, Gonzalez JT. et al. Is breakfast the most important meal of the day?. Proc Nutr Soc 2016; 75: 464-474
  • 39 Kuntz B, Giese L, Varnaccia G. et al. Soziale Determinanten des täglichen Frühstücksverzehrs bei Schülern in Deutschland. Präv Gesundheitsf 2018; 13: 53-62
  • 40 Ardeshirlarijani E, Namazi N, Jabbari M. et al. The link between breakfast skipping and overweigh/obesity in children and adolescents: a meta-analysis of observational studies. J Diabetes Metab Disord 2019; 18: 657-664
  • 41 Bi H, Gan Y, Yang C. et al. Breakfast skipping and the risk of type 2 diabetes: A meta-analysis of observational studies. Public Health Nutr 2015; 18: 3013-3019
  • 42 Sievert K, Hussain SM, Page MJ. et al. Effect of breakfast on weight and energy intake: systematic review and meta-analysis of randomised controlled trials. BMJ 2019; 364: l42
  • 43 Betts JA, Richardson JD, Chowdhury EA. et al. The causal role of breakfast in energy balance and health: A randomized controlled trial in lean adults. Am J Clin Nutr 2014; 100: 539-547
  • 44 Chowdhury EA, Richardson JD, Holman GD. et al. The causal role of breakfast in energy balance and health: A randomized controlled trial in obese adults. Am J Clin Nutr 2016; 103: 747-756
  • 45 Mekary RA, Giovannucci E, Willett WC. et al. Eating patterns and type 2 diabetes risk in men: breakfast omission, eating frequency, and snacking. Am J Clin Nutr 2012; 95: 1182-1189
  • 46 de Cabo R, Mattson MP. Effects of Intermittent Fasting on Health, Aging, and Disease. NEJM 2019; 381: 2541-2551
  • 47 Zarrinpar A, Chaix A, Yooseph S. et al. Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metab 2014; 20: 1006-1017
  • 48 Sherman H, Genzer Y, Cohen R. et al. Timed high-fat diet resets circadian metabolism and prevents obesity. FASEB J 2012; 26: 3493-3502
  • 49 Hatori M, Vollmers C, Zarrinpar A. et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab 2012; 15: 848-860
  • 50 Gill S, Panda S. A Smartphone App Reveals Erratic Diurnal Eating Patterns in Humans that Can Be Modulated for Health Benefits. Cell Metab 2015; 22: 789-798
  • 51 Rothschild J, Hoddy KK, Jambazian P. et al. Time-restricted feeding and risk of metabolic disease: a review of human and animal studies. Nutr Rev 2014; 72: 308-318
  • 52 Gabel K, Hoddy KK, Haggerty N. et al. Effects of 8-hour time restricted feeding on body weight and metabolic disease risk factors in obese adults: A pilot study. Nutr Healthy Aging 2018; 4: 345-353
  • 53 Antoni R, Robertson TM, Robertson MD. et al. A pilot feasibility study exploring the effects of a moderate time-restricted feeding intervention on energy intake, adiposity and metabolic physiology in free-living human subjects. J Nutr Sci 2018; 7: 499
  • 54 Sutton EF, Beyl R, Early KS. et al. Early Time-Restricted Feeding Improves Insulin Sensitivity, Blood Pressure, and Oxidative Stress Even without Weight Loss in Men with Prediabetes. Cell Metab 2018; 27: 1212-1221.e3
  • 55 de Castro JM. The time of day of food intake influences overall intake in humans. J Nutr 2004; 134: 104-111
  • 56 Fong M, Caterson ID, Madigan CD. Are large dinners associated with excess weight, and does eating a smaller dinner achieve greater weight loss? A systematic review and meta-analysis. Br J Nutr 2017; 118: 616-628
  • 57 Bo S, Musso G, Beccuti G. et al. Consuming more of daily caloric intake at dinner predisposes to obesity. A 6-year population-based prospective cohort study. PLoS ONE 2014; 9: e108467
  • 58 Sakai R, Hashimoto Y, Ushigome E. et al. Late-night-dinner is associated with poor glycemic control in people with type 2 diabetes: The KAMOGAWA-DM cohort study. Endocr J 2018; 65: 395-402
  • 59 Garaulet M, Gómez-Abellán P, Alburquerque-Béjar JJ. et al. Timing of food intake predicts weight loss effectiveness. Int J Obes (Lond) 2013; 37: 604-611
  • 60 Ruiz-Lozano T, Vidal J, de Hollanda A. et al. Timing of food intake is associated with weight loss evolution in severe obese patients after bariatric surgery. Clin Nutr 2016; 35: 1308-1314
  • 61 Raynor HA, Li F, Cardoso C. Daily pattern of energy distribution and weight loss. Physiol Behav 2018; 192: 167-172
  • 62 Versteeg RI, Ackermans MT, Nederveen AJ. et al. Meal timing effects on insulin sensitivity and intrahepatic triglycerides during weight loss. Int J Obes (Lond) 2018; 42: 156-162
  • 63 Coulthard JD, Pot GK. The timing of the evening meal: how is this associated with weight status in UK children?. Br J Nutr 2016; 115: 1616-1622
  • 64 Diederichs T, Perrar I, Roßbach S. et al. In adolescence a higher 'eveningness in energy intake' is associated with higher total daily energy intake. Appetite 2018; 128: 159-166
  • 65 Arble DM, Bass J, Laposky AD. et al. Circadian timing of food intake contributes to weight gain. Obesity 2009; 17: 2100-2102
  • 66 Bo S, Fadda M, Castiglione A. et al. Is the timing of caloric intake associated with variation in diet-induced thermogenesis and in the metabolic pattern? A randomized cross-over study. Int J Obes (Lond) 2015; 39: 1689-1695
  • 67 Bandín C, Scheer FAJL, Luque AJ. et al. Meal timing affects glucose tolerance, substrate oxidation and circadian-related variables: A randomized, crossover trial. Int J Obes (Lond) 2015; 39: 828-833
  • 68 Kessler K, Hornemann S, Petzke KJ. et al. The effect of diurnal distribution of carbohydrates and fat on glycaemic control in humans: a randomized controlled trial. Sci Rep 2017; 7: 44170
  • 69 Morgan LM, Shi J-W, Hampton SM. et al. Effect of meal timing and glycaemic index on glucose control and insulin secretion in healthy volunteers. Br J Nutr 2012; 108: 1286-1291
  • 70 Leung GKW, Huggins CE, Bonham MP. Effect of meal timing on postprandial glucose responses to a low glycemic index meal: A crossover trial in healthy volunteers. Clin Nutr 2019; 38: 465-471
  • 71 Diederichs T, Herder C, Roßbach S. et al. Carbohydrates from Sources with a Higher Glycemic Index during Adolescence: Is Evening Rather than Morning Intake Relevant for Risk Markers of Type 2 Diabetes in Young Adulthood?. Nutrients 2017; 9: 591
  • 72 Horne JA, Ostberg O. A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int J Chronobiol 1976; 4: 97-110
  • 73 Roenneberg T, Wirz-Justice A, Merrow M. Life between clocks: daily temporal patterns of human chronotypes. J Biol Rhythms 2003; 18: 80-90
  • 74 Roenneberg T, Kuehnle T, Pramstaller PP. et al. A marker for the end of adolescence. Curr Biol 2004; 14: 9
  • 75 Arora T, Taheri S. Associations among late chronotype, body mass index and dietary behaviors in young adolescents. Int J Obes (Lond) 2015; 39: 39-44
  • 76 Fleig D, Randler C. Association between chronotype and diet in adolescents based on food logs. Eat Behav 2009; 10: 115-118
  • 77 Golley RK, Maher CA, Matricciani L. et al. Sleep duration or bedtime? Exploring the association between sleep timing behaviour, diet and BMI in children and adolescents. Int J Obes (Lond) 2013; 37: 546-551
  • 78 Pot GK, Almoosawi S, Stephen AM. Meal irregularity and cardiometabolic consequences: results from observational and intervention studies. Proc Nutr Soc 2016; 75: 475-486
  • 79 Williams PG. The benefits of breakfast cereal consumption: a systematic review of the evidence base. Adv Nutr 2014; 5: 636-673
  • 80 Tolfrey K, Zakrzewski JK. Breakfast, glycaemic index and health in young people. J Sport Health Sci 2012; 1: 149-159
  • 81 Kanerva N, Kronholm E, Partonen T. et al. Tendency toward eveningness is associated with unhealthy dietary habits. Chronobiol Int 2012; 29: 920-927
  • 82 Baron KG, Reid KJ, Kern AS. et al. Role of sleep timing in caloric intake and BMI. Obesity (Silver Spring) 2011; 19: 1374-1381
  • 83 Patterson F, Malone SK, Lozano A. et al. Smoking, Screen-Based Sedentary Behavior, and Diet Associated with Habitual Sleep Duration and Chronotype: Data from the UK Biobank. Ann Behav Med 2016; 50: 715-726
  • 84 Maukonen M, Kanerva N, Partonen T. et al. Chronotype differences in timing of energy and macronutrient intakes: A population-based study in adults. Obesity (Silver Spring) 2017; 25: 608-615
  • 85 Muñoz JSG, Cañavate R, Hernández CM. et al. The association among chronotype, timing of food intake and food preferences depends on body mass status. Eur J Clin Nutr 2017; 71: 736-742
  • 86 Galindo Muñoz JS, Gómez Gallego M, Díaz Soler I. et al. Effect of a chronotype-adjusted diet on weight loss effectiveness: A randomized clinical trial. Clin Nutr 2020; 39: 1041-1048
  • 87 Maukonen M, Kanerva N, Partonen T. et al. Chronotype and energy intake timing in relation to changes in anthropometrics: a 7-year follow-up study in adults. Chronobiol Int 2019; 36: 27-41
  • 88 McHill AW, Phillips AJ, Czeisler CA. et al. Later circadian timing of food intake is associated with increased body fat. Am J Clin Nutr 2017; 106: 1213-1219
  • 89 Scheer FAJL, Hilton MF, Mantzoros CS. et al. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci USA 2009; 106: 4453-4458
  • 90 Leproult R, Holmbäck U, van Cauter E. Circadian misalignment augments markers of insulin resistance and inflammation, independently of sleep loss. Diabetes 2014; 63: 1860-1869
  • 91 Qian J, Morris CJ, Caputo R. et al. Ghrelin is impacted by the endogenous circadian system and by circadian misalignment in humans. Int J Obes (Lond) 2019; 43: 1644-1649
  • 92 Roenneberg T, Allebrandt KV, Merrow M. et al. Social jetlag and obesity. Curr Biol 2012; 22: 939-943
  • 93 Koopman ADM, Rauh SP, van’t Riet E. et al. The Association between Social Jetlag, the Metabolic Syndrome, and Type 2 Diabetes Mellitus in the General Population: The New Hoorn Study. J Biol Rhythms 2017; 32: 359-368