Synlett 2021; 32(10): 1014-1018
DOI: 10.1055/a-1396-5933
letter

Iodine-Mediated Sulfenylation of Imidazo[1,2-a]pyridines with Ethyl Arylsulfinates

Jian Sun
a   Ningxia Center of Agricultural Organic Synthesis, Agricultural Resource and Environment Institute of Ningxia Academy of Agriculture and Forestry Science, Yinchuan, 750002, P. R. of China
,
Yangxiu Mu
a   Ningxia Center of Agricultural Organic Synthesis, Agricultural Resource and Environment Institute of Ningxia Academy of Agriculture and Forestry Science, Yinchuan, 750002, P. R. of China
,
Zafar Iqbal
a   Ningxia Center of Agricultural Organic Synthesis, Agricultural Resource and Environment Institute of Ningxia Academy of Agriculture and Forestry Science, Yinchuan, 750002, P. R. of China
,
Jing Hou
a   Ningxia Center of Agricultural Organic Synthesis, Agricultural Resource and Environment Institute of Ningxia Academy of Agriculture and Forestry Science, Yinchuan, 750002, P. R. of China
,
Minghua Yang
b   Department of Chemistry, Lishui University, Lishui, 323000, P. R. of China
,
Zhixiang Yang
a   Ningxia Center of Agricultural Organic Synthesis, Agricultural Resource and Environment Institute of Ningxia Academy of Agriculture and Forestry Science, Yinchuan, 750002, P. R. of China
,
Dong Tang
a   Ningxia Center of Agricultural Organic Synthesis, Agricultural Resource and Environment Institute of Ningxia Academy of Agriculture and Forestry Science, Yinchuan, 750002, P. R. of China
b   Department of Chemistry, Lishui University, Lishui, 323000, P. R. of China
› Author Affiliations
We gratefully acknowledge financial support from the Ningxia Key Research and Development Program (2018BEB04034) and the Natural Science Foundation of Zhejiang Province, P. R. of China (LY18B020004).


Abstract

A simple iodine-mediated approach is reported for the synthesis of sulfenylated imidazo[1,2-a]pyridines through the reaction of imidazo[1,2-a]pyridines with ethyl arylsulfinates under mild conditions. The reaction scope was investigated, and a plausible mechanism is proposed to elucidate the reaction process and activation mode. The results indicate that ethyl sulfinates are efficient sulfur sources for the construction of C–S bonds.

Supporting Information



Publication History

Received: 19 December 2020

Accepted after revision: 20 February 2021

Accepted Manuscript online:
20 February 2021

Article published online:
02 March 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Zhao Z, Pissarnitski DA, Josien HB, Wu W.-L, Xu R, Li H, Clader JW, Burnett DA, Terracina G, Hyde L, Lee J, Song L, Zhang L, Parker EM. J. Med. Chem. 2015; 58: 8806
    • 1b Feng M, Tang B, Liang SH, Jiang X. Curr. Top. Med. Chem. (Sharjah, United Arab Emirates) 2016; 16: 1200
    • 1c Kang D, Fang Z, Huang B, Lu X, Zhang H, Xu H, Huo Z, Zhou Z, Yu Z, Meng Q, Wu G, Ding X, Tian Y, Daelemans D, De Clercq E, Pannecouque C, Zhan P, Liu X. J. Med. Chem. 2017; 60: 4424
    • 1d Mao Z, Yang Z, Mu Y, Zhang Y, Wang Y.-F, Chi Z, Lo C.-C, Liu S, Lien A, Xu J. Angew. Chem. Int. Ed. 2015; 54: 6270
    • 1e Zhang C, Zhu X. Acc. Chem. Res. 2017; 50: 1342
    • 2a Wang L, He W, Yu Z. Chem. Soc. Rev. 2013; 42: 599
    • 2b Modha SG, Mehta VP, Van der Eycken EV. Chem. Soc. Rev. 2013; 42: 5042
    • 3a DiMauro EF, Kennedy JM. J. Org. Chem. 2007; 72: 1013
    • 3b Enguehard-Gueiffier C, Gueiffier A. Mini-Rev. Med. Chem. 2007; 7: 888
    • 4a Okubo T, Yoshikawa R, Chaki S, Okuyama S, Nakazato A. Bioorg. Med. Chem. 2004; 12: 423
    • 4b Ilardi EA, Vitaku E, Njardarson JT. J. Med. Chem. 2014; 57: 2832
    • 4c Ritchie TJ, Macdonald SJ. J. Med. Chem. 2014; 57: 7206
    • 4d Kucher OV, Kolodyazhnaya AO, Smolii OB, Nazarenko NK, Kubyshkin VP, Mykhailiuk K, Tolmachev AA. Tetrahedron: Asymmetry 2016; 27: 341
  • 5 Huang X, Wang S, Li B, Wang X, Ge Z, Li R. RSC Adv. 2015; 5: 22654
  • 6 Chowdhury SR, Fadikar P, Ul Hoque I, Maity S. Asian J. Org. Chem. 2018; 7: 332
  • 7 Ravi C, Mohan DC, Adimurthy S. Org. Biomol. Chem. 2016; 14: 2282
  • 8 Sun P, Yang D, Wei W, Jiang M, Wang Z, Zhang L, Zhang H, Zhang Z, Wang Y, Wang H. Green Chem. 2017; 19: 4785
    • 9a Ravi C, Chandra Mohan D, Adimurthy S. Org. Lett. 2014; 16: 2978
    • 9b Rahaman R, Das S, Barman P. Green Chem. 2018; 20: 141
    • 9c Iida H, Demizu R, Ohkado R. J. Org. Chem. 2018; 83: 12291
    • 10a Ge W, Zhu X, Wei Y. Eur. J. Org. Chem. 2013; 2013: 6015
    • 10b Rafique J, Saba S, Rosário AR, Braga AL. Chem. Eur. J. 2016; 22: 11854
    • 10c Maddi RR, Shirsat PK, Kumar S, Meshram HM. ChemistrySelect 2017; 2: 1544
    • 10d Bettanin L, Saba S, Doerner CV, Franco MS, Godoi M, Rafique J, Braga AL. Tetrahedron 2018; 74: 3971
    • 11a Ravi C, Joshi A, Adimurthy S. Eur. J. Org. Chem. 2017; 2017: 3646
    • 11b Reddy RJ, Shankar A, Kumari AH. Asian J. Org. Chem. 2019; 8: 2269
    • 12a Zhu W, Ding Y, Bian Z, Xie P, Xu B, Tang Q, Wu W, Zhou A. Adv. Synth. Catal. 2017; 359: 2215
    • 12b Ravi C, Reddy NN. K, Pappula V, Samanta S, Adimurthy S. J. Org. Chem. 2017; 81: 9964
  • 13 Guo Y.-J, Lu S, Tian L.-L, Huang E.-L, Hao X.-Q, Zhu X, Shao T, Song M.-P. J. Org. Chem. 2018; 83: 338
  • 14 Yang D, Sun P, Wei W, Liu F, Zhang H, Wang H. Chem. Eur. J. 2018; 24: 4423
    • 15a Li G.-J, Pan Y.-L, Liu Y.-L, Xu H.-F, Chen J.-Z. Tetrahedron Lett. 2019; 60: 151260
    • 15b Ruano JL. G, Parra A, Yuste F, Mastranzo VM. Synthesis 2008; 2008: 311
    • 15c Ruano JL. G, Parra A, Marzo L, Yuste F, Mastranzo VM. Tetrahedron 2011; 67: 2905
    • 16a Yuste F, Hernández Linares A, Mastranzo VM, Ortiz B, Sánchez-Obregón R, Fraile A, Garcia Ruano JL. J. Org. Chem. 2011; 76: 4635
    • 16b Ni C, Zhang L, Hu J. J. Org. Chem. 2009; 74: 3767
    • 17a Li J, Chen Y, Zhong R, Zhang Y, Yang J, Ding H, Wang Z. Org. Lett. 2020; 22: 1164
    • 17b Bahrami K, Khodaei MM, Karimi A. Synthesis 2008; 2008: 2543
    • 17c Meng X, Chen D, Cao X, Luo J, Wang F, Huang S. Chem. Commun. 2019; 55: 12495
  • 18 Yang X, Bao Y, Dai Z, Zhou Q, Yang F. Green Chem. 2018; 20: 3727
  • 19 Zhu R.-H, Shi X.-X. Synth. Commun. 2012; 42: 1108
  • 20 Li Y, Zhu F, Wang Z, Wu X.-F. Chem. Asian J. 2016; 11: 3503
    • 21a Ji Y.-Z, Li H.-J, Wang Y.-R, Zhang Z.-Y, Wu Y.-C. Adv. Synth. Catal. 2020; 362: 1039
    • 21b Nguyen N.-LT, Vo H.-T, Duus F, Luu TX. T. Molecules 2017; 22: 1458
  • 22 3-(Arylsulfanyl)imidazo[1,2-a]pyridines 3aa–am and 3ba–ka; General Procedure A sealed tube was charged with the appropriate ethyl arylsulfinate (0.4 mmol), imidazo[1,2-a]pyridine (0.2 mmol), I2 (0.75 equiv), and MeCN (2 mL), and the mixture was stirred at 120 °C for 6 h. When the reaction was complete, the mixture was allowed to cool to r.t. and concentrated under reduced pressure. The residue was purified by chromatography (silica gel, 10% EtOAc–PE). 3-[(4-Methylphenyl)sulfanyl]-2-phenylimidazo[1,2-a]pyridine (3aa) Yellow solid; yield: 45 mg (72%); mp 131–133 °C. 1H NMR (400 MHz, CDCl3): δ = 8.30 – 8.14 (m, 3 H), 7.72 (d, J = 9.0 Hz, 1 H), 7.49–7.25 (m, 4 H), 7.01 (d, J = 8.0 Hz, 2 H), 6.95–6.78 (m, 3 H), 2.24 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 151.21, 147.04, 136.05, 133.42, 131.51, 130.23, 128.58, 128.43, 128.41, 126.61, 125.84, 124.55, 117.64, 113.04, 106.89, 20.91. HRMS (ESI): m/z [M + H]+ calcd for C20H17N2S: 317.1107; found: 317.1105.