CC BY-NC-ND 4.0 · SynOpen 2021; 05(04): 308-313
DOI: 10.1055/a-1662-7462
paper

Intramolecular Oxidative Diaryl Coupling of Tetrasubstituted Diphenylamines for the Preparation of Bis(trifluoromethyl) Dimethyl Carbazoles

a   Organic Energy Storage Laboratory, Michigan State University Bioeconomy Institute, 242 Howard Avenue, Holland, MI 49424, USA
b   Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27710, USA
,
a   Organic Energy Storage Laboratory, Michigan State University Bioeconomy Institute, 242 Howard Avenue, Holland, MI 49424, USA
,
a   Organic Energy Storage Laboratory, Michigan State University Bioeconomy Institute, 242 Howard Avenue, Holland, MI 49424, USA
c   Department of Chemistry, Hope College, 35 East 12th Street, Holland, MI 49423, USA
,
Thomas F. Guarr
a   Organic Energy Storage Laboratory, Michigan State University Bioeconomy Institute, 242 Howard Avenue, Holland, MI 49424, USA
d   Jolt Energy Storage Laboratory, 242 Howard Avenue, Holland, MI 49424, USA
› Author Affiliations
Funding support provided by the Community Foundation of the Holland­/Zeeland area of Michigan and the Michigan Strategic Fund with Lakeshore Advantage. Agilent 6224 LC/MS-TOF (High Resolution) was supported by the National Science Foundation (NSF) (Grant Number CHE-0923097).


Abstract

Synthetic preparation of carbazoles can be challenging, requiring ring-building strategies and/or precious metal catalysts. Presented herein is a method for the preparation of carbazoles with the use of inexpensive and reliable hypervalent iodine chemistry. An oxidative single-electron-transfer (SET) event initiates cyclization for the preparation of our trifluoromethyl carbazoles. This method has been shown to be useful for a variety of bis(trifluoromethyl)carbazole isomers that are of primary interest for use as battery materials.

Supporting Information



Publication History

Received: 01 September 2021

Accepted after revision: 05 October 2021

Accepted Manuscript online:
06 October 2021

Article published online:
10 November 2021

© 2021. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Fei X, Li R, Lin D, Gu Y, Yu L. J. Fluoresc. 2015; 25: 1251
  • 2 Wang G, Chen H, Chen X, Xie Y. RSC Adv. 2016; 6: 18662
  • 3 Wang L, Sheibani E, Guo Y, Zhang W, Li Y, Liu P, Xu B, Kloo L, Sun L. Sol. RRL 2019; 3: 1900196
  • 4 Kumar R, Sudhakar V, Prakash K, Krishnamoorthy K, Sankar M. ACS Appl. Energy Mater. 2018; 1: 2793
  • 5 Gantenbein M, Hellstern M, Le Pleux L, Neuburger M, Mayor M. Chem. Mater. 2015; 27: 1772
  • 6 Hou M, Wang H, Miao Y, Xu H, Guo Z, Chen Z, Liao X, Li L, Li J, Guo K. ACS Appl. Energy Mater. 2018; 1: 3243
  • 7 Tagare J, Boddula R, Yadav RA. K, Dubey DK, Jou J.-H, Patel S, Vaidyanathan S. Dyes Pigm. 2021; 185: 108853
  • 8 Adhikari RM, Neckers DC, Shah BK. J. Org. Chem. 2009; 74: 3341
  • 9 Madram AR, Zarandi M, Beni AS, Bayat Y. Russ. J. Electrochem. 2019; 55: 637
  • 10 Men F, Liu N, Lan Q, Zhao Y, Qin J, Song Z, Zhan H. ChemSusChem 2020; 13: 2410
  • 11 Carbazole. PubMed. National Library of Medicine: PubMed. https://pubmed.ncbi.nlm.nih.gov (accessed 2021-08-25).
  • 12 Liu Y.-P, Guo J.-M, Liu Y.-Y, Hu S, Yan G, Qiang L, Fu Y.-H. J. Agric. Food Chem. 2019; 67: 5764
  • 13 Shaikh S, Dhavan P, Singh P, Uparkar J, Vaidya SP, Jadhav BL, Ramana MV. J. Biomol. Struct. Dyn. 2020; 1
  • 14 Wang B.-Y, Lin Y.-C, Lai Y.-T, Ou J.-Y, Chang W.-W, Chu C.-C. Bioorg. Chem. 2020; 100: 103904
  • 15 Luparello C, Cruciata I, Joerger AC, Ocasio CA, Jones R, Tareque RK, Bagley MC, Spencer J, Walker M, Austin C, Ferrara T, D’Oca P, Bellina R, Branni R, Caradonna F. Int. J. Mol. Sci. 2021; 22: 3410
  • 16 Caruso A, Ceramella J, Iacopetta D, Saturnino C, Mauro MV, Bruno R, Aquaro S, Sinicropi MS. Molecules 2019; 24: 1912
  • 17 Zhao Y.-L, Huang X, Liu L.-W, Wang P.-Y, Long Q.-S, Tao Q.-Q, Li Z, Yang S. J. Agric. Food Chem. 2019; 67: 7512
  • 18 Wang W, Li Q, Wei Y, Xue J, Sun X, Yu Y, Chen Z, Li S, Duan L. Int. J. Parasitol.: Drugs Drug Resist. 2017; 7: 191
  • 19 Liu Y.-P, Hu S, Liu Y.-Y, Zhang M.-M, Zhang W.-H, Qiang L, Fu Y.-H. Bioorg. Chem. 2019; 91: 103107
  • 20 Ma Y.-L, Liu Y.-P, Zhang C, Zhao W.-H, Shi S, He D.-N, Zhang P, Liu X.-H, Han T.-T, Fu Y.-H. Bioorg. Chem. 2018; 76: 359
  • 21 Tan Q, Xu B. In Studies in Natural Products Chemistry, Vol. 50. Elsevier; Amsterdam: 2016: 299
  • 22 Prins AJ, Dumitrascu A, Mortimer NJ, Henton DR, Guarr TF. ECS Trans. 2017; 80: 97
  • 23 Karon K, Lapkowski M. J. Solid State Electrochem. 2015; 19: 2601
  • 24 Chen Z, Qin Y, Amine K. Electrochim. Acta 2009; 54: 5605
    • 25a Campeau L.-C, Parisien M, Jean A, Fagnou K. J. Am. Chem. Soc. 2006; 128: 581
    • 25b Liégault B, Lee D, Huestis MP, Stuart DR, Fagnou K. J. Org. Chem. 2008; 73: 5022
  • 26 Liang J.-Y, Shen S.-J, Xu X.-H, Fu Y.-L. Org. Lett. 2018; 20: 6627
  • 27 Francesconi O, Martinucci M, Badii L, Nativi C, Roelens S. Chem. Eur. J. 2018; 24: 6828
  • 28 Durán-Galván M, Worlikar SA, Connell BT. Tetrahedron 2010; 66: 7707
    • 29a Graebe A, Ullmann F. Justus Liebigs Ann. Chem. 1896; 291: 16
    • 29b Preston RW. G, Tucker SH, Cameron JM. L. J. Chem. Soc. 1942; 500
  • 30 Cho SH, Yoon J, Chang S. J. Am. Chem. Soc. 2011; 133: 5996
  • 31 Tohma H, Morioka H, Takizawa S, Arisawa M, Kita Y. Tetrahedron 2001; 57: 345
  • 32 Dohi T, Kita Y. Hypervalent Iodine Chemistry, Vol. 373 2016; 1
  • 33 Fairlamb IJ. S, Kapdi AR, Lee AF, McGlacken GP, Weissburger F, de Vries AH. M, Schmieder-van de Vondervoort L. Chem. Eur. J. 2006; 12: 8750
  • 34 Bei X, Guram AS, Turner HW, Weinberg WH. Tetrahedron Lett. 1999; 40: 1237
  • 35 Murarka S, Antonchick AP. Hypervalent Iodine Chemistry, Vol. 373. Wirth T. Springer; Cham: 2015: 75
  • 36 Yamamoto K, Gomita I, Okajima H, Sakamoto A, Mutoh K, Abe J. Chem. Commun. 2019; 55: 4917
  • 37 Di Stefano M, Negri F, Carbone P, Müllen K. Chem. Phys. 2005; 314: 85
  • 38 Rempala P, Kroulík J, King BT. J. Org. Chem. 2006; 71: 5067
  • 39 Deppmeier B, Driessen A, Hehre T, Hehre W, Klunzinger P, Ohlinger S, Schnitker J. Spartan ’18 . Wavefunction Inc; Irvine, CA: 2019
  • 40 Shao Y, Gan Z, Epifanovsky E, Gilbert AT. B, Wormit M, Kussmann J, Lange AW, Behn A, Deng J, Feng X, Ghosh D, Goldey M, Horn PR, Jacobson LD, Kaliman I, Khaliullin RZ, Kuś T, Landau A, Liu J, Proynov EI, Rhee YM, Richard RM, Rohrdanz MA, Steele RP, Sundstrom EJ, Woodcock HL, Zimmerman PM, Zuev D, Albrecht B, Alguire E, Austin B, Beran GJ. O, Bernard YA, Berquist E, Brandhorst K, Bravaya KB, Brown ST, Casanova D, Chang C.-M, Chen Y, Chien SH, Closser KD, Crittenden DL, Diedenhofen M, DiStasio RA, Do H, Dutoi AD, Edgar RG, Fatehi S, Fusti-Molnar L, Ghysels A, Golubeva-Zadorozhnaya A, Gomes J, Hanson-Heine MW. D, Harbach PH. P, Hauser AW, Hohenstein EG, Holden ZC, Jagau T.-C, Ji H, Kaduk B, Khistyaev K, Kim J, Kim J, King RA, Klunzinger P, Kosenkov D, Kowalczyk T, Krauter CM, Lao KU, Laurent AD, Lawler KV, Levchenko SV, Lin CY, Liu F, Livshits E, Lochan RC, Luenser A, Manohar P, Manzer SF, Mao S.-P, Mardirossian N, Marenich AV, Maurer SA, Mayhall NJ, Neuscamman E, Oana CM, Olivares-Amaya R, O’Neill DP, Parkhill JA, Perrine TM, Peverati R, Prociuk A, Rehn DR, Rosta E, Russ NJ, Sharada SM, Sharma S, Small DW, Sodt A, Stein T, Stück D, Su Y.-C, Thom AJ. W, Tsuchimochi T, Vanovschi V, Vogt L, Vydrov O, Wang T, Watson MA, Wenzel J, White A, Williams CF, Yang J, Yeganeh S, Yost SR, You Z.-Q, Zhang IY, Zhang X, Zhao Y, Brooks BR, Chan GK. L, Chipman DM, Cramer CJ, Goddard WA, Gordon MS, Hehre WJ, Klamt A, Schaefer HF, Schmidt MW, Sherrill CD, Truhlar DG, Warshel A, Xu X, Aspuru-Guzik A, Baer R, Bell AT, Besley NA, Chai J.-D, Dreuw A, Dunietz BD, Furlani TR, Gwaltney SR, Hsu C.-P, Jung Y, Kong J, Lambrecht DS, Liang W, Ochsenfeld C, Rassolov VA, Slipchenko LV, Subotnik JE, Van Voorhis T, Herbert JM, Krylov AI, Gill PM. W, Head-Gordon M. Mol. Phys. 2015; 113: 184
  • 41 Wang RL, Buhrmester C, Dahn JR. J. Electrochem. Soc. 2006; 153: A445
  • 42 Lucassen AC. B, Zubkov T, Shimon LJ. W, van der Boom ME. CrystEngComm 2007; 9: 538