CC BY-NC-ND 4.0 · SynOpen 2021; 05(04): 314-320
DOI: 10.1055/a-1681-4544
paper

Mild Biamidine-Transfer Conditions for the Synthesis of Aliphatic Biguanides

Rostyslav Bardovskyi
a   Université Côte d’Azur, ICN, UMR 7272 CNRS, 06108 Nice, France
,
Marie Fabre
a   Université Côte d’Azur, ICN, UMR 7272 CNRS, 06108 Nice, France
,
Cyril Ronco
a   Université Côte d’Azur, ICN, UMR 7272 CNRS, 06108 Nice, France
,
a   Université Côte d’Azur, ICN, UMR 7272 CNRS, 06108 Nice, France
b   Mohamed VI Polytechnic University, UM6P, 43150 BenGuerir, Morocco
› Author Affiliations
The authors are grateful for the financial support from the Research Fund of the Cancéropôle Provence-Alpes-Côte d'Azur (PACA) and the SATT-Sud Est (EmA grant – Emergence et Accompagnement). The Centre National de la Recherche Scientifique (CNRS), Université Côte d’Azur, ANR, and Région Sud are also acknowledged for additional funding.


Abstract

This study focuses on the development of new synthetic pathways to monosubstituted biguanides from amines. An exhaustive comparison of the conditions and reagents used for biamidine transfer was performed. New reagents were synthesized and optimized conditions for the synthesis of substituted biguanides under mild conditions were developed. Eventually, two high-yielding and straightforward protocols for the transfer of a biamidine group to various amines are proposed and their scope and limitations have been explored. These conditions include: i) a direct chromatography-free procedure and ii) an eco-friendly procedure in water compatible with bioinspired molecules. They are particularly efficient for the demanding conversion of aliphatic amines.

Supporting Information



Publication History

Received: 27 July 2021

Accepted: 06 August 2021

Accepted Manuscript online:
28 October 2021

Article published online:
18 November 2021

© 2021. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Kathuria D, Bankar AA, Bharatam PV. J. Mol. Struct. 2018; 1152: 61
  • 2 Elmar B, Stach K, Schmidt FH, Heerdt R, Weber H. US4017539A, 1977
  • 3 Mayer S, Daigle DM, Brown ED, Khatri J, Organ MG. J. Comb. Chem. 2004; 6: 776
  • 4 Smolka A, Friedreich A. Monatsh. Chem. 1888; 9: 227
  • 5 Tonelli M, Espinoza S, Gainetdinov RR, Cichero E. Eur. J. Med. Chem. 2017; 127: 781
  • 6 van Kuijk SJ. A, Parvathaneni NK, Niemans R, van Gisbergen MW, Carta F, Vullo D, Pastorekova S, Yaromina A, Supuran CT, Dubois LJ, Winum J.-Y, Lambin P. Eur. J. Med. Chem. 2017; 127: 691
  • 7 Suyama T, Soga T, Miyauchi KA. Nippon Kagaku Kaishi 1989; 5: 884
  • 8 Obianom ON, Coutinho AL, Yang W, Yang H, Xue F, Shu Y. Mol. Pharm. 2017; 14: 2726
  • 9 Kim SW, Kim HW, Yoo SH, Lee JS, Heo HJ, Lee HB, Kook JA, Lee YW, Kim MJ, Cho W. WO2015160220A1, 2015
  • 10 Fortun S, Schmitzer AR. ACS Omega 2018; 3: 1889
  • 11 Fortun S, Schmitzer AR. Can. J. Chem. 2020; 98: 251
  • 12 Guo Z, Cainmldge AN, Mckiilop A. Tetrahedron Lett. 1999; 40: 6999
  • 13 Chen HY, Zhao M, Tan J.-H, Huang Z.-S, Liu G.-F, Ji L.-N, Mao Z.-W. Tetrahedron 2014; 70: 2378
  • 14 Yan Q, Zhao Y. Chem. Sci. 2015; 6: 4343
  • 15 Hao X, Sang W, Hu J, Yan Q. ACS Macro Lett. 2017; 6: 1151
  • 16 Shuhui C, Zhifei F, Jian L, Miaorong L, Yang Z. AU2017306487A1, 2018
  • 17 Vaillancourt VA, Larsen SD, Tanis SP, Burr JE, Connell MA, Cudahy MM, Evans BR, Fisher PV, May PD, Meglasson MD, Robinson DD, Stevens FC, Tucker JA, Vidmar TJ, Yu JH. J. Med. Chem. 2001; 44: 1231
  • 18 Igashira-Kamiyama A, Kajiwara T, Nakano M, Konno T, Ito T. Inorg. Chem. 2009; 48: 11388
  • 19 Eilingsfeld H, Scheuermann H. Chem. Ber. 1967; 100: 1874
  • 20 Bando S, Ichikawa E, Odo K. J. Synth. Org. Chem., Jpn. 1970; 28: 521
  • 21 Kawano K. Bull. Kyushu Inst. Technol., Math., Nat. Sci. 1962; 12: 69
  • 22 Kim HW, Jeong JK, Lee JS, Heo HJ, Lee HB, Kook JA, Kim SW. WO2016080810 A2, 2016
  • 23 Shapiro SL, Parrino VA, Freedman L. J. Am. Chem. Soc. 1959; 81: 3728
  • 24 Kim SW, Kim HW, Yoo SH, Lee JS, Heo HJ, Lee HB, Kook JA, Lee YW, Kim MJ, Cho W. US2017073331 A1, 2015
  • 25 Ma X, Tan S.-T, Khoo C.-L, Sim H.-M, Chan L.-W, Chui W.-K. Bioorg. Med. Chem. Lett. 2011; 21: 5428
  • 26 Makowska A, Saczewski F, Bednarski PJ, Saczewski J, Balewski Ł. Molecules 2018; 23: 1
  • 27 Husain MI, Srivastava VP. Indian J. Chem., Sect. B. Org. Chem. Incl. Med. Chem. 1984; 23B: 789
  • 28 Corbellini A, Lugaro G, Giannattasio G, Torti G. Arch. Ital. Patol. Clin. Tumori 1967; 10: 197
  • 29 Shapiro SL, Freedman L. US2961377A, 1957
  • 30 Kim HW, Jeong JK, Lee JS, Hye JH, Kook JA, Kim SW. US2020/0277255 A1, 2020