Synlett 2022; 33(07): 599-608
DOI: 10.1055/a-1696-4553
synpacts

Catalytic Deoxygenative Cyclopropanation of 1,2-Dicarbonyl or Monocarbonyl Compounds via Molybdenum Catalysis

Jia-Le Wang
,
Chun-Xiang Zhuo
We are grateful for financial support from the Fundamental Research Funds for the Central Universities (20720210012), the Recruitment Program of Global Experts, and Xiamen University.


Abstract

The cyclopropanation of alkenes through the transition-metal-catalyzed decomposition of diazo compounds is a powerful and straightforward strategy to produce cyclopropanes. Nevertheless, the appeal of further application of this strategy is tempered by the potentially explosive nature of the diazo substrates. Therefore, it is highly desirable to develop sustainable and operationally safe surrogates for diazo compounds. In this Synpacts article, we discuss recent advances on the cyclopropane syntheses through the catalytic cyclopropanation of alkenes and metal carbenes generated in situ from nondiazo precursors as well as highlight our recent progress on the unprecedented molybdenum-catalyzed deoxygenative cyclopropanation reaction of 1,2-dicarbonyl or monocarbonyl compounds.



Publication History

Received: 29 October 2021

Accepted after revision: 13 November 2021

Accepted Manuscript online:
13 November 2021

Article published online:
07 December 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 2a Boger DL, McKie JA, Nishi T, Ogiku T. J. Am. Chem. Soc. 1996; 118: 2301
    • 2b Yamada K, Kurokawa T, Tokuyama H, Fukuyama T. J. Am. Chem. Soc. 2003; 125: 6630
    • 2c Gentles RG, Ding M, Bender JA, Bergstrom CP, Grant-Young K, Hewawasam P, Hudyma T, Martin S, Nickel A, Regueiro-Ren A, Tu Y, Yang Z, Yeung K.-S, Zheng X, Chao S, Sun J.-H, Beno BR, Camac DM, Chang C.-H, Gao M, Morin PE, Sheriff S, Tredup J, Wan J, Witmer MR, Xie D, Hanumegowda U, Knipe J, Mosure K, Santone KS, Parker DD, Zhuo X, Lemm J, Liu M, Pelosi L, Rigat K, Voss S, Wang Y, Wang Y.-K, Colonno RJ, Gao M, Roberts SB, Gao Q, Ng A, Meanwell NA, Kadow JF. J. Med. Chem. 2014; 57: 1855
    • 2d Winkler JD, Rouse MB, Greaney MF, Harrison SJ, Jeon YT. J. Am. Chem. Soc. 2002; 124: 9726
    • 2e McKerrall SJ, Jørgensen L, Kuttruff CA, Ungeheuer F, Baran PS. J. Am. Chem. Soc. 2014; 136: 5799
    • 2f Richter MJ. R, Schneider M, Brandstätter M, Krautwald S, Carreira EM. J. Am. Chem. Soc. 2018; 140: 16704
    • 2g Schneider M, Richter MJ. R, Carreira EM. J. Am. Chem. Soc. 2020; 142: 17802
    • 2h Augeri DJ, Robl JA, Betebenner DA, Magnin DR, Khanna A, Robertson JG, Wang A, Simpkins LM, Taunk P, Huang Q, Han S.-P, Abboa-Offei B, Cap M, Xin L, Tao L, Tozzo E, Welzel GE, Egan DM, Marcinkeviciene J, Chang SY, Biller SA, Kirby MS, Parker RA, Hamann LG. J. Med. Chem. 2005; 48: 5025
    • 3a Donaldson WA. Tetrahedron 2001; 57: 8589
    • 3b Lebel H, Marcoux JF, Molinaro C, Charette AB. Chem. Rev. 2003; 103: 977
    • 3c Kulinkovich OG. In Cyclopropanes in Organic Synthesis . John Wiley & Sons; Hoboken: 2015
    • 3d Dian L, Marek I. Chem. Rev. 2018; 118: 8415
    • 3e Wu W, Lin Z, Jiang H. Org. Biomol. Chem. 2018; 16: 7315
  • 4 Doyle MP, McKervey MA, Ye T. In Modern Catalytic Methods for Organic Synthesis with Diazo Compounds . John Wiley & Sons; New York: 1998

    • For reviews, see:
    • 5a Doyle MP, Forbes DC. Chem. Rev. 1998; 98: 911
    • 5b Davies HM. L, Antoulinakis EG. Org. React. 2001; 57: 1
    • 5c Maas G. Chem. Soc. Rev. 2004; 33: 183
    • 5d Ford A, Miel H, Ring A, Slattery CN, Maguire AR, McKervey MA. Chem. Rev. 2015; 115: 9981

    • For selected recent examples on the transition-metal-catalyzed cyclopropanation of diazo compounds, see:
    • 5e Li J, Liao S.-H, Xiong H, Zhou Y.-Y, Sun X.-L, Zhang Y, Zhou X.-G, Tang Y. Angew. Chem. Int. Ed. 2012; 51: 8838
    • 5f Cao Z.-Y, Wang X, Tan C, Zhao X.-L, Zhou J, Ding K. J. Am. Chem. Soc. 2013; 135: 8197
    • 5g Chi Y, Qiu L, Xu X. Org. Biomol. Chem. 2016; 14: 10357
    • 5h Collins LR, Gastel M, Neese F, Fürstner A. J. Am. Chem. Soc. 2018; 140: 13042
    • 5i Collins LR, Auris S, Goddard R, Fürstner A. Angew. Chem. Int. Ed. 2019; 58: 3557
    • 5j Montesinos-Magraner M, Costantini M, Ramírez-Contreras R, Muratore ME, Johansson MJ, Mendoza A. Angew. Chem. Int. Ed. 2019; 58: 5930
    • 5k Smith KL, Padgett CL, Mackay WD, Johnson JS. J. Am. Chem. Soc. 2020; 142: 6449
    • 5l Singha S, Buchsteiner M, Bistoni G, Goddard R, Fürstner A. J. Am. Chem. Soc. 2021; 143: 5666
    • 6a Kornecki KP, Briones JF, Boyarskikh V, Fullilove F, Autschbach J, Schrote KE, Lancaster KM, Davies HM. L, Berry JF. Science 2013; 342: 351
    • 6b Werlé C, Goddard R, Fürstner A. Angew. Chem. Int. Ed. 2015; 54: 15452 ; Angew. Chem. 2015, 127, 15672
    • 6c Werlé C, Goddard R, Philipps P, Farès C, Fürstner A. Angew. Chem. Int. Ed. 2016; 55: 10760 ; Angew. Chem. 2016, 128, 10918
    • 6d Werlé C, Goddard R, Philipps P, Farès C, Fürstner A. J. Am. Chem. Soc. 2016; 138: 3797

      For selected recent reviews on the generation of transition-metal carbene intermediates via nondiazo approaches, see:
    • 8a Zhang L. Acc. Chem. Res. 2014; 47: 877
    • 8b Obradors C, Echavarren AM. Acc. Chem. Res. 2014; 47: 902
    • 8c Davies HM. L, Alford JS. Chem. Soc. Rev. 2014; 43: 5151
    • 8d Zheng Z, Wang Z, Wang Y, Zhang L. Chem. Soc. Rev. 2016; 45: 4448
    • 8e Jia M, Ma S. Angew. Chem. Int. Ed. 2016; 55: 9134 ; Angew. Chem. 2016, 128, 9280
    • 8f Xia Y, Qiu D, Wang J. Chem. Rev. 2017; 117: 13810
    • 8g Chen L, Chen K, Zhu S. Chem 2018; 4: 1208
    • 8h Fürstner A. J. Am. Chem. Soc. 2019; 141: 11
    • 8i Zhu D, Chen L, Fan H, Yao Q, Zhu S. Chem. Soc. Rev. 2020; 49: 908
    • 8j Tian X, Song L, Hashmi AS. K. Chem. Eur. J. 2020; 26: 3197
    • 8k Xia Y, Wang J. J. Am. Chem. Soc. 2020; 142: 10592
    • 8l Ye L.-W, Zhu X.-Q, Sahani RL, Xu Y, Qian P.-C, Liu R.-S. Chem. Rev. 2021; 121: 9039
    • 8m Wang T, Hashmi AS. K. Chem. Rev. 2021; 121: 8948
  • 9 Aggarwal VK, Alonso E, Fang G, Ferrara M, Hynd G, Porcrlloni M. Angew. Chem. Int. Ed. 2001; 40: 1433
  • 10 Müller P, Ghanem A. Org. Lett. 2004; 6: 4347
  • 11 Moreau B, Charette AB. J. Am. Chem. Soc. 2005; 127: 18014
  • 12 Barrett AG. M, Braddock C, Lenoir I, Tone H. J. Org. Chem. 2001; 66: 8260
  • 13 Wurz RP, Charette AB. Org. Lett. 2002; 4: 4531
  • 14 Morandi B, Carreira EM. Angew. Chem. Int. Ed. 2010; 49: 938
  • 15 Morandi B, Mariampillai B, Carreira EM. Angew. Chem. Int. Ed. 2011; 50: 1101
  • 16 Horneff T, Chuprakov S, Chernyak N, Gevorgyan V, Fokin VV. J. Am. Chem. Soc. 2008; 130: 14972
  • 17 Grimster N, Zhang L, Fokin VV. J. Am. Chem. Soc. 2010; 132: 2510
  • 18 Miege F, Meyer C, Cossy J. Angew. Chem. Int. Ed. 2011; 50: 5932
  • 19 Solorio-Alvarado CR, Wang Y, Echavarren AM. J. Am. Chem. Soc. 2011; 133: 11592
  • 20 Nieto-Oberhuber C, Muñoz MP, Buñuel E, Nevado C, Cárdenas DJ, Echavarren AM. Angew. Chem. Int. Ed. 2004; 43: 2402
  • 21 Johansson MJ, Gorin DJ, Staben ST, Toste FD. J. Am. Chem. Soc. 2005; 127: 18002
  • 22 Miki K, Nishino F, Ohe K, Uemura S. J. Am. Chem. Soc. 2002; 124: 5260
  • 23 Zhu D, Ma J, Luo K, Fu H, Zhang L, Zhu S. Angew. Chem. Int. Ed. 2016; 55: 8452
  • 24 Hong F.-L, Wang Z.-S, Wei D.-D, Zhai T.-Y, Deng G.-C, Lu X, Liu R.-S, Ye L.-W. J. Am. Chem. Soc. 2019; 141: 16961
  • 25 Vasu D, Hung H.-H, Bhunia S, Gawade AS, Das A, Liu R.-S. Angew. Chem. Int. Ed. 2011; 50: 6911
  • 26 Qian D, Zhang J. Chem. Commun. 2011; 47: 11152
  • 27 Ji K, Zheng Z, Wang Z, Zhang L. Angew. Chem. Int. Ed. 2014; 54: 1245
  • 28 Qian D, Hu H, Liu F, Tang B, Ye W, Wang Y, Zhang J. Angew. Chem. Int. Ed. 2014; 53: 13751
    • 29a Peil S, Guthertz A, Biberger T, Fürstner A. Angew. Chem. Int. Ed. 2019; 58: 8851
    • 29b Peil S, Bistoni G, Goddard R, Fürstner A. J. Am. Chem. Soc. 2020; 142: 18541
  • 30 Cao L.-Y, Luo J.-N, Yao J.-S, Wang D.-K, Dong Y.-Q, Zheng C, Zhuo C.-X. Angew. Chem. Int. Ed. 2021; 60: 15254
    • 31a Motherwell WB. J. Chem. Soc., Chem. Commun. 1973; 935
    • 31b Fujiwara Y, Ishikawa R, Akiyama F, Teranishi S. J. Org. Chem. 1978; 43: 2477
    • 31c Ogawa A, Takami N, Sekiguchi M, Ryu I, Kambe N, Sonoda N. J. Am. Chem. Soc. 1992; 114: 8729
    • 31d Ogawa A, Nanke T, Takami N, Sekiguchi M, Kambe N, Sonoda N. Appl. Organomet. Chem. 1995; 9: 461
    • 31e Ogawa A, Takami N, Nanke T, Ohya S, Hirao T, Sonoda N. Tetrahedron 1997; 53: 12895
    • 31f Villiers C, Ephritikhine M. Chem. Eur. J. 2001; 7: 3043
    • 31g Motherwell WB. J. Organomet. Chem. 2001; 624: 41
    • 32a Bryan JC, Mayer JM. J. Am. Chem. Soc. 1987; 109: 7213
    • 32b Chisholm MH, Klang JA. J. Am. Chem. Soc. 1989; 111: 2324
    • 32c Bryan JC, Mayer JM. J. Am. Chem. Soc. 1990; 112: 2298
    • 32d Chisholm MH, Folting K, Klang JA. Organometallics 1990; 9: 602
    • 32e Chisholm MH, Folting K, Klang JA. Organometallics 1990; 9: 607
    • 32f Hall KA, Mayer JM. J. Am. Chem. Soc. 1992; 114: 10402
    • 32g Lutz M, Haukka M, Pakkanen TA, Gade LH. Organometallics 2001; 20: 2631
    • 32h Marquard SL, Bezpalko MW, Foxman BM, Thomas CM. J. Am. Chem. Soc. 2013; 135: 6018
    • 32i Zhang H, Wu B, Marquard SL, Litle ED, Dickie DA, Bezpalko MW, Foxman BM, Thomas CM. Organometallics 2017; 36: 3498
    • 32j Asako S, Ishihara S, Hirata K, Takai K. J. Am. Chem. Soc. 2019; 141: 9832
    • 32k Asako S, Kobayashi T, Ishihara S, Takai K. Asian J. Org. Chem. 2021; 10: 753

      For reviews on the use of molybdenum(VI) complexes in organic synthesis, see:
    • 33a Sanz R, Pedrosa MR. Curr. Org. Synth. 2009; 6: 239
    • 33b Hernández-Ruiz R, Sanz R. Synthesis 2018; 50: 4019
  • 34 Brinson RG, Jones PB. Tetrahedron Lett. 2004; 45: 6155
  • 35 Suginome H, Yamada S. J. Org. Chem. 1985; 50: 2489
  • 36 For a recent review on oxidation of amine α-carbon to amide, see: Nagaraaj P, Vijayakumar V. Org. Chem. Front. 2019; 6: 2570

    • For reviews, see:
    • 37a Ramirez F. Acc. Chem. Res. 1968; 1: 168
    • 37b Osman FH, El-Samahy FA. Chem. Rev. 2002; 102: 629
    • 37c Liu Y, Sun F, He Z. Tetrahedron Lett. 2018; 59: 4136
  • 38 For an elegant computational study on the molybdenum-catalyzed retrocyclopropanation, see: Asako S, Kobashi T, Takai K. J. Am. Chem. Soc. 2018; 140: 15425

    • For selected examples on the reduction of the dioxomolybdenum(VI) complex using a phosphine, see:
    • 39a Sanz R, Escribano J, Aguado R, Pedrosa MR, Arnáiz FJ. Synthesis 2004; 1629
    • 39b Sanz R, Escribano J, Fernández Y, Aguado R, Pedrosa MR, Arnáiz FJ. Synlett 2005; 1389
    • 39c Sanz R, Escribano J, Pedrosa MR, Aguado R, Arnáiz FJ. Adv. Synth. Catal. 2007; 349: 713
    • 39d Asako S, Sakae T, Murai M, Takai K. Adv. Synth. Catal. 2016; 358: 3966