Angewandte Nuklearmedizin 2022; 45(04): 345-350
DOI: 10.1055/a-1712-6220
Nuklearmedizinische Hirnbildgebung
Übersicht

Klinischer Stellenwert der Bildgebung der Neuroinflammation

Clinical value of neuroinflammation imaging
Nathalie Albert
1   Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum der LMU München, München
,
Matthias Brendel
1   Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum der LMU München, München
› Author Affiliations

Zusammenfassung

Die Neuroinflammation ist ein komplexer und dynamischer Prozess, der an zahlreichen Erkrankungen des Gehirns beteiligt ist, von demyelinisierenden Erkrankungen über neurodegenerative Erkrankungen, psychiatrische Erkrankungen bis hin zu Hirntumorerkrankungen. Diagnostisch sind das Vorliegen und Ausmaß der Neuroinflammation mitunter schwer zu erfassen. In der konventionellen MRT werden Prozesse mit massiver Entzündungsaktivität durch Störungen der Blut-Hirn-Schranke dargestellt, während inflammatorische Prozesse auf geringerem Level häufig nicht nachzuweisen sind oder nicht von einem nach abgelaufener Entzündung verbleibenden Glioseareal zu differenzieren sind. Die PET stellt eine sinnvolle Bildgebungsmethode zur direkten Darstellung der Neuroinflammation dar, die insbesondere bei der Diagnosestellung, Prognoseeinschätzung und Therapieantwort inflammatorischer ZNS-Erkrankungen hilfreich sein kann. Der Artikel soll eine Übersicht über verfügbare Tracer zur Darstellung der Neuroinflammation geben und den bisherigen klinischen Einsatz sowie die Aussagekraft der Untersuchungen beleuchten.

Abstract

Neuroinflammation is a complex and dynamic process that is implicated in numerous diseases of the brain, from demyelinating diseases to neurodegenerative diseases, psychiatric diseases and brain tumour diseases. However, its depiction and measurement of extent or activation level is highly challenging based on conventional methods. On standard MRI, only lesions with a high inflammatory activity are associated with a disrupted blood-brain-barrier and can be depicted by contrast enhancement, while neuroinflammation at a lower level may not be detected or not be distinguished from glial scar tissue. Therefore, PET imaging targeting components of the inflammatory process represent a promising diagnostic tool to depict neuroinflammation, which can help in the diagnosis, prognostication and response assessment of various diseases of the brain. This article is intended to provide an overview of available PET tracers for the imaging of neuroinflammation, their clinical use to date as well as the significance of the investigations.



Publication History

Article published online:
02 December 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Kreisl WC, Kim M-J, Coughlin JM. et al. PET imaging of neuroinflammation in neurological disorders. The Lancet Neurology 2020; 19: 940-950
  • 2 Roesch S, Rapp C, Dettling S. et al. When Immune Cells Turn Bad-Tumor-Associated Microglia/Macrophages in Glioma. International journal of molecular sciences 2018; 19
  • 3 Beaino W, Janssen B, Vugts DJ. et al. Towards PET imaging of the dynamic phenotypes of microglia. Clin Exp Immunol 2021; 206: 282-300
  • 4 Ransohoff RM. A polarizing question: do M1 and M2 microglia exist?. Nat Neurosci 2016; 19: 987-991
  • 5 Nutma E, Fancy N, Weinert M. et al. Translocator protein is a marker of activated microglia in rodent models but not human neurodegenerative diseases. bioRxiv 2022;
  • 6 Bartos LM, Kunte ST, Beumers P. et al. Single cell radiotracer allocation via immunomagentic sorting (scRadiotracing) to disentangle PET signals at cellular resolution. Journal of nuclear medicine 2022;
  • 7 Chauveau F, Becker G, Boutin H. Have (R)-[(11)C]PK11195 challengers fulfilled the promise? A scoping review of clinical TSPO PET studies. European journal of nuclear medicine and molecular imaging 2021; 49: 201-220
  • 8 Owen DR, Yeo AJ, Gunn RN. et al. An 18-kDa translocator protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism 2012; 32: 1-5
  • 9 Zanotti-Fregonara P, Veronese M, Pascual B. et al. The validity of (18)F-GE180 as a TSPO imaging agent. European journal of nuclear medicine and molecular imaging 2019; 46: 1205-1207
  • 10 Albert NL, Unterrainer M, Brendel M. et al. In response to: The validity of (18)F-GE180 as a TSPO imaging agent. European journal of nuclear medicine and molecular imaging 2019; 46: 1208-1211
  • 11 Vomacka L, Albert NL, Lindner S. et al. TSPO imaging using the novel PET ligand [(18)F]GE-180: quantification approaches in patients with multiple sclerosis. EJNMMI research 2017; 7: 89
  • 12 Saura J, Kettler R, Da Prada M. et al. Quantitative enzyme radioautography with 3H-Ro 41–1049 and 3H-Ro 19–6327 in vitro: localization and abundance of MAO-A and MAO-B in rat CNS, peripheral organs, and human brain. J Neurosci 1992; 12: 1977-1999
  • 13 Meyer JH, Braga J. Development and Clinical Application of Positron Emission Tomography Imaging Agents for Monoamine Oxidase B. Front Neurosci 2021; 15: 773404
  • 14 Elmore MR, Najafi AR, Koike MA. et al. Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron 2014; 82: 380-397
  • 15 Horti AG, Naik R, Foss CA. et al. PET imaging of microglia by targeting macrophage colony-stimulating factor 1 receptor (CSF1R). Proceedings of the National Academy of Sciences of the United States of America 2019; 116: 1686-91
  • 16 Zhou X, Ji B, Seki C. et al. PET imaging of colony-stimulating factor 1 receptor: A head-to-head comparison of a novel radioligand, (11)C-GW2580, and (11)C-CPPC, in mouse models of acute and chronic neuroinflammation and a rhesus monkey. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism 2021; 41: 2410-2422
  • 17 Bisogno T, Oddi S, Piccoli A. et al. Type-2 cannabinoid receptors in neurodegeneration. Pharmacol Res 2016; 111: 721-730
  • 18 Schmid MC, Khan SQ, Kaneda MM. et al. Integrin CD11b activation drives anti-tumor innate immunity. Nat Commun 2018; 9: 5379
  • 19 Bordonne M, Chawki MB, Doyen M. et al. Brain (18)F-FDG PET for the diagnosis of autoimmune encephalitis: a systematic review and a meta-analysis. European journal of nuclear medicine and molecular imaging 2021; 48: 3847-3858
  • 20 Graus F, Titulaer MJ, Balu R. et al. A clinical approach to diagnosis of autoimmune encephalitis. The Lancet Neurology 2016; 15: 391-404
  • 21 Bodini B, Tonietto M, Airas L. et al. Positron emission tomography in multiple sclerosis - straight to the target. Nature reviews Neurology 2021; 17: 663-675
  • 22 Stankoff B, Poirion E, Tonietto M. et al. Exploring the heterogeneity of MS lesions using positron emission tomography: a reappraisal of their contribution to disability. Brain Pathol 2018; 28: 723-734
  • 23 Unterrainer M, Mahler C, Vomacka L. et al. TSPO PET with [(18)F]GE-180 sensitively detects focal neuroinflammation in patients with relapsing-remitting multiple sclerosis. European journal of nuclear medicine and molecular imaging 2018; 45: 1423-1431
  • 24 Mahler C, Schumacher AM, Unterrainer M. et al. TSPO PET imaging of natalizumab-associated progressive multifocal leukoencephalopathy. Brain 2021; 144: 2683-2695
  • 25 Masdeu JC, Pascual B, Fujita M. Imaging Neuroinflammation in Neurodegenerative Disorders. Journal of nuclear medicine 2022; 63: 45S-52S
  • 26 Dani M, Wood M, Mizoguchi R. et al. Microglial activation correlates in vivo with both tau and amyloid in Alzheimer's disease. Brain 2018; 141: 2740-2754
  • 27 Zou J, Tao S, Johnson A. et al. Microglial activation, but not tau pathology, is independently associated with amyloid positivity and memory impairment. Neurobiol Aging 2020; 85: 11-21
  • 28 Fan Z, Brooks DJ, Okello A. et al. An early and late peak in microglial activation in Alzheimer's disease trajectory. Brain 2017; 140: 792-803
  • 29 Hamelin L, Lagarde J, Dorothee G. et al. Early and protective microglial activation in Alzheimer's disease: a prospective study using 18F-DPA-714 PET imaging. Brain 2016; 139: 1252-1264
  • 30 Xiang X, Wind K, Wiedemann T. et al. Microglial activation states drive glucose uptake and FDG-PET alterations in neurodegenerative diseases. Sci Transl Med 2021; 13: eabe5640
  • 31 Felsky D, Roostaei T, Nho K. et al. Neuropathological correlates and genetic architecture of microglial activation in elderly human brain. Nat Commun 2019; 10: 409
  • 32 Foray C, Barca C, Backhaus P. et al. Multimodal Molecular Imaging of the Tumour Microenvironment. Adv Exp Med Biol 2020; 1225: 71-87
  • 33 Unterrainer M, Fleischmann DF, Vettermann F. et al. TSPO PET, tumour grading and molecular genetics in histologically verified glioma: a correlative (18)F-GE-180 PET study. European journal of nuclear medicine and molecular imaging 2020; 47: 1368-1380
  • 34 Meyer JH, Cervenka S, Kim MJ. et al. Neuroinflammation in psychiatric disorders: PET imaging and promising new targets. Lancet Psychiatry 2020; 7: 1064-1074