Klin Monbl Augenheilkd 2022; 239(06): 786-792
DOI: 10.1055/a-1782-7941
Klinische Studie

Two-Year Follow-up of MicroPulse Transscleral Laser Therapy in Patients with Primary Open-Angle Glaucoma

Article in several languages: deutsch | English
Sören Waibel
Augenklinik, Universitätsklinikum Carl Gustav Carus, Dresden, Deutschland
,
Robert Herber
Augenklinik, Universitätsklinikum Carl Gustav Carus, Dresden, Deutschland
,
Lisa Ramm
Augenklinik, Universitätsklinikum Carl Gustav Carus, Dresden, Deutschland
,
Carolin S. Jasper
Augenklinik, Universitätsklinikum Carl Gustav Carus, Dresden, Deutschland
,
Lutz E. Pillunat
Augenklinik, Universitätsklinikum Carl Gustav Carus, Dresden, Deutschland
,
Karin R. Pillunat
Augenklinik, Universitätsklinikum Carl Gustav Carus, Dresden, Deutschland
› Author Affiliations

Abstract

Purpose To determine the long-term efficacy and safety of MicroPulse transscleral laser therapy (TLT) over a 24-month period in patients with primary open angle glaucoma.

Methods This prospective interventional case series evaluated data from 44 medically treated eyes of primary open angle glaucoma (POAG) patients who received MicroPulse TLT to achieve further reduction in IOP. The reduction in 24-hr mean diurnal intraocular pressure (IOP), diurnal IOP fluctuations, and peak IOP were monitored after 3, 12, and 24 months. Postoperative complications, failure rates, and factors influencing IOP reduction were also evaluated.

Results IOP decreased from 16.1 ± 3.4 mmHg preoperatively to 13.0 ± 2.9 mmHg (n = 31; p < 0.001), 12.3 ± 3.0 mmHg (n = 27; p < 0.001), and 13.1 ± 2.6 mmHg (n = 23; p < 0.001) at the 3-month, 12-month and 24-month follow-ups. At 24 months, 23 eyes (52%) had a sufficient IOP reduction to reach the individual target pressure. No severe complications were observed. No parameters could be identified that correlated with successful IOP reduction after treatment. The highest failure rate was observed during the first 3 months and remained stable thereafter.

Conclusion For about 50% of POAG eyes receiving the maximum tolerated treatment, MicroPulse TLT proved an effective method of further lowering IOP so as to reach the individual target pressure.



Publication History

Received: 06 January 2022

Accepted: 23 February 2022

Article published online:
14 April 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur/References

  • 1 Feldman RM, el-Harazi SM, LoRusso FJ. et al. Histopathologic findings following contact transscleral semiconductor diode laser cyclophotocoagulation in a human eye. J Glaucoma 1997; 6: 139-140
  • 2 Pantcheva MB, Kahook MY, Schuman JS. et al. Comparison of acute structural and histopathological changes of the porcine ciliary processes after endoscopic cyclophotocoagulation and transscleral cyclophotocoagulation. Clin Exp Ophthalmol 2007; 35: 270-274
  • 3 Moussa K, Feinstein M, Pekmezci M. et al. Histologic Changes Following Continuous Wave and Micropulse Transscleral Cyclophotocoagulation: A Randomized Comparative Study. Transl Vis Sci Technol 2020; 9: 22
  • 4 Ishida K. Update on results and complications of cyclophotocoagulation. Curr Opin Ophthalmol 2013; 24: 102-110
  • 5 Ramli N, Htoon HM, Ho CL. et al. Risk factors for hypotony after transscleral diode cyclophotocoagulation. J Glaucoma 2012; 21: 169-173
  • 6 Moorman CM, Hamilton AM. Clinical applications of the MicroPulse diode laser. Eye (Lond) 1999; 13: 145-150
  • 7 Kuchar S, Moster MR, Reamer CB. et al. Treatment outcomes of micropulse transscleral cyclophotocoagulation in advanced glaucoma. Lasers Med Sci 2016; 31: 393-396
  • 8 Aquino MC, Barton K, Tan AM. et al. Micropulse versus continuous wave transscleral diode cyclophotocoagulation in refractory glaucoma: a randomized exploratory study. Clin Exp Ophthalmol 2015; 43: 40-46
  • 9 Varikuti VNV, Shah P, Rai O. et al. Outcomes of Micropulse Transscleral Cyclophotocoagulation in Eyes With Good Central Vision. J Glaucoma 2019; 28: 901-905
  • 10 de Crom R, Slangen C, Kujovic-Aleksov S. et al. Micropulse Transscleral Cyclophotocoagulation in Patients with Glaucoma: 1- and 2-year Treatment Outcomes. J Glaucoma 2020; 29: 794-798
  • 11 Zaarour K, Abdelmassih Y, Arej N. et al. Outcomes of Micropulse Transscleral Cyclophotocoagulation in Uncontrolled Glaucoma Patients. J Glaucoma 2019; 28: 270-275
  • 12 Sarrafpour S, Saleh D, Ayoub S. et al. Micropulse Transscleral Cyclophotocoagulation: A Look at Long-Term Effectiveness and Outcomes. Ophthalmol Glaucoma 2019; 2: 167-171
  • 13 European Glaucoma Society Terminology and Guidelines for Glaucoma, 4th Edition – Chapter 2: Classification and terminology Supported by the EGS Foundation: Part 1: Foreword; Introduction; Glossary; Chapter 2 Classification and Terminology. Br J Ophthalmol 2017; 101: 73-127
  • 14 Herber R, Kaiser A, Grahlert X. et al. [Statistical analysis of correlated measurement data in ophthalmology: Tutorial for the application of the linear mixed model in SPSS and R using corneal biomechanical parameters]. Ophthalmologe 2020; 117: 27-35
  • 15 Asrani S, Zeimer R, Wilensky J. et al. Large diurnal fluctuations in intraocular pressure are an independent risk factor in patients with glaucoma. J Glaucoma 2000; 9: 134-142
  • 16 Nouri-Mahdavi K, Hoffman D, Coleman AL. et al. Predictive factors for glaucomatous visual field progression in the Advanced Glaucoma Intervention Study. Ophthalmology 2004; 111: 1627-1635
  • 17 Leske MC, Heijl A, Hyman L. et al. Predictors of long-term progression in the early manifest glaucoma trial. Ophthalmology 2007; 114: 1965-1972
  • 18 Emanuel ME, Grover DS, Fellman RL. et al. Micropulse Cyclophotocoagulation: Initial Results in Refractory Glaucoma. J Glaucoma 2017; 26: 726-729
  • 19 Williams AL, Moster MR, Rahmatnejad K. et al. Clinical Efficacy and Safety Profile of Micropulse Transscleral Cyclophotocoagulation in Refractory Glaucoma. J Glaucoma 2018; 27: 445-449
  • 20 Ansari E. 10-year outcomes of first-line selective laser trabeculoplasty (SLT) for primary open-angle glaucoma (POAG). Graefes Arch Clin Exp Ophthalmol 2021; 259: 1597-1604