CC BY 4.0 · Organic Materials 2022; 4(02): 7-17
DOI: 10.1055/a-1814-7686
Supramolecular Chemistry
Original Article

Synthesis and C60 Binding of Aza[10]CPP and N-Methylaza[10]CPP

Fabian Schwer
a   Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
,
b   Department of Chemistry and Pharmacy, Physical Chemistry I, Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany.
,
Markus Freiberger
b   Department of Chemistry and Pharmacy, Physical Chemistry I, Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany.
,
Ramandeep Kaur
b   Department of Chemistry and Pharmacy, Physical Chemistry I, Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany.
,
Stefan Frühwald
c   Department of Chemistry and Pharmacy, Theoretical Chemistry, Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany.
,
Craig C. Robertson
d   Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U. K.
,
Andreas Görling
c   Department of Chemistry and Pharmacy, Theoretical Chemistry, Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany.
,
b   Department of Chemistry and Pharmacy, Physical Chemistry I, Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany.
,
b   Department of Chemistry and Pharmacy, Physical Chemistry I, Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany.
,
a   Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
› Author Affiliations


Abstract

Within the growing family of strained carbon nanohoops and nanobelts, [10]CPP arguably offers the best compromise between synthetic accessibility and strong binding affinity for C60. In this work, we report the synthesis of two nitrogen-containing analogues of [10]CPP and we systematically compare the structure, optoelectronic properties and C60 binding affinities of this small set of structurally similar macrocycles. While Aza[10]CPP outcompetes the parent compound by approximately one order of magnitude with respect to C60 binding, we found that the reverse was true for the methylaza analogue. Transient absorption studies showed that photo-induced electron transfer occurred readily from [10]CPP and its aza-analogue to an encapsulated C60 guest. Formation of a charge-separated complex was not observed however for the N-methylated derivative. These insights will prove useful for further applications of strained nanohoops in supramolecular chemistry and organic electronics.



Publication History

Received: 13 January 2022

Accepted after revision: 10 March 2022

Publication Date:
01 April 2022 (online)

© 2022. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Tran-Van A-F, Wegner HA. Beilstein J. Nanotechnol. 2014; 5: 1320
    • 1b Darzi ER, Jasti R. Chem. Soc. Rev. 2015; 44: 6401
    • 1c Lewis SE. Chem. Soc. Rev. 2015; 44: 2221
    • 1d Segawa Y, Yagi A, Matsui K, Itami K. Angew. Chem. Int. Ed. 2016; 55: 5136
    • 1e Wu D, Cheng W, Ban X, Xia J. Asian J. Org. Chem. 2018; 7: 2161
    • 1f Yamago S, Kayahara E. J. Synth. Org. Chem. Jpn. 2019; 77: 1147
    • 1g Griwatz JH, Wegner HA. Org. Mater. 2020; 02: 306
    • 1h Li Y, Kono H, Maekawa T, Segawa Y, Yagi A, Itami K. Acc. Mater. Res. 2021; 2: 681
    • 2a Cheung KY, Segawa Y, Itami K. Chem. Eur. J. 2020; 26: 14791
    • 2b Chen H, Miao Q. J. Phys. Org. Chem. 2020; 33: e4152
    • 2c Guo Q-H, Qiu Y, Wang M-X, Stoddart FJ. Nat. Chem. 2021; 13: 402
  • 3 Jasti R, Bhattacharjee J, Neaton JB, Bertozzi CR. J. Am. Chem. Soc. 2008; 130: 17646
    • 4a Yamago S, Kayahara E, Iwamoto T. Chem. Rec. 2014; 14: 84
    • 4b Golder MR, Jasti R. Acc. Chem. Res. 2015; 48: 557
    • 5a Xu Y, Delius M. Angew. Chem. Int. Ed. 2020; 59: 559
    • 5b Lu D, Huang Q, Wang S, Wang J, Huang P, Du P. Front. Chem. 2019; 7: 668
    • 5c Beil SB, von Delius M. Org. Mater. 2021; 03: 146
    • 5d Yang Y, Juríček M. ChemPlusChem. 2021; in press DOI: 10.1002/cplu.202100468.
  • 6 Wang J, Zhang X, Jia H, Wang S, Du P. Acc. Chem. Res. 2021; 54: 4178
  • 7 Hermann M, Wassy D, Esser B. Angew. Chem. Int. Ed. 2021; 60: 15743
    • 8a Xia J, Golder MR, Foster ME, Wong BM, Jasti R. J. Am. Chem. Soc. 2012; 134: 19709
    • 8b Ishii Y, Matsuura S, Segawa Y, Itami K. Org. Lett. 2014; 16: 2174
    • 8c Kayahara E, Qu R, Yamago S. Angew. Chem. Int. Ed. 2017; 56: 10428
    • 8d Leonhardt EJ, Van Raden JM, Miller D, Zakharov LN, Alemán B, Jasti R. Nano Lett. 2018; 18: 7991
    • 8e Hashimoto S, Kayahara E, Mizuhata Y, Tokitoh N, Takeuchi K, Ozawa F, Yamago S. Org. Lett. 2018; 20: 5973
    • 8f Xu Y, Wang B, Kaur R, Minameyer MB, Bothe M, Drewello T, Guldi DM, von Delius M. Angew. Chem. Int. Ed. 2018; 57: 11549
    • 8g Van Raden JM, Leonhardt EJ, Zakharov LN, Pérez-Guardiola A, Pérez-Jiménez AJ, Marshall CR, Brozek CK, Sancho-García JC, Jasti R. J. Org. Chem. 2020; 85: 129
    • 8h Itami K, Shudo H, Kuwayama M, Shimasaki M, Nishihara T, Takeda Y, Kuwabara T, Yagi A, Segawa Y. 2021; ChemRxiv DOI: 10.33774/chemrxiv-2021-7kd63.
    • 9a Nishiuchi T, Feng X, Enkelmann V, Wagner M, Müllen K. Chem. Eur. J. 2012; 18: 16621
    • 9b Yagi A, Segawa Y, Itami K. J. Am. Chem. Soc. 2012; 134: 2962
    • 9c Batson JM, Swager TM. Synlett 2013; 24: 2545
    • 9d Tran-Van A-F, Huxol E, Basler JM, Neuburger M, Adjizian J-J, Ewels CP, Wegner HA. Org. Lett. 2014; 16: 1594
    • 9e Iwamoto T, Kayahara E, Yasuda N, Suzuki T, Yamago S. Angew. Chem. Int. Ed. 2014; 53: 6430
    • 9f Kubota N, Segawa Y, Itami K. J. Am. Chem. Soc. 2015; 137: 1356
    • 9g Miyauchi Y, Johmoto K, Yasuda N, Uekusa H, Fujii S, Kiguchi M, Ito H, Itami K, Tanaka K. Chem. Eur. J. 2015; 21: 18900
    • 9h Sarkar P, Sato S, Kamata S, Matsuno T, Isobe H. Chem. Lett. 2015; 44: 1581
    • 9i Kuroda Y, Sakamoto Y, Suzuki T, Kayahara E, Yamago S. J. Org. Chem. 2016; 81: 3356
    • 9j Ikemoto K, Fujita M, Too PC, Tnay YL, Sato S, Chiba S, Isobe H. Chem. Lett. 2016; 45: 658
    • 9k Li P, Wong BM, Zakharov LN, Jasti R. Org. Lett. 2016; 18: 1574
    • 9l Lu D, Wu H, Dai Y, Shi H, Shao X, Yang S, Yang J, Du P. Chem. Commun. 2016; 52: 7164
    • 9m Della Sala P, Talotta C, Caruso T, De Rosa M, Soriente A, Neri P, Gaeta C. J. Org. Chem. 2017; 82: 9885
    • 9n Nishigaki S, Fukui M, Sugiyama H, Uekusa H, Kawauchi S, Shibata Y, Tanaka K. Chem. Eur. J. 2017; 23: 7227
    • 9o Lu D, Zhuang G, Jia H, Wang J, Huang Q, Cui S, Du P. Org. Chem. Front. 2018; 5: 1446
    • 9p Povie G, Segawa Y, Nishihara T, Miyauchi Y, Itami K. J. Am. Chem. Soc. 2018; 140: 10054
    • 9q Jia H, Gao Y, Huang Q, Cui S, Du P. Chem. Commun. 2018; 54: 988
    • 9r White BM, Zhao Y, Kawashima TE, Branchaud BP, Pluth MD, Jasti R. ACS Cent. Sci. 2018; 4: 1173
    • 9s Della Sala P, Talotta C, De Rosa M, Soriente A, Geremia S, Hickey N, Neri P, Gaeta C. J. Org. Chem. 2019; 84: 9489
    • 9t Huang Q, Zhuang G, Jia H, Qian M, Cui S, Yang S, Du P. Angew. Chem. Int. Ed. 2019; 58: 6244
    • 9u Huang Q, Zhuang G, Zhang M, Wang J, Wang S, Wu Y, Yang S, Du P. J. Am. Chem. Soc. 2019; 141: 18938
    • 9v Nishigaki S, Shibata Y, Nakajima A, Okajima H, Masumoto Y, Osawa T, Muranaka A, Sugiyama H, Horikawa A, Uekusa H, Koshino H, Uchiyama M, Sakamoto A, Tanaka K. J. Am. Chem. Soc. 2019; 141: 14955
    • 9w Lovell TC, Garrison ZR, Jasti R. Angew. Chem. Int. Ed. 2020; 59: 14363
    • 9x Peters GM, Grover G, Maust RL, Colwell CE, Bates H, Edgell WA, Jasti R, Kertesz M, Tovar JD. J. Am. Chem. Soc. 2020; 142: 2293
    • 9y Kayahara E, Nakano M, Sun L, Ishida K, Yamago S. Chem. Asian J. 2020; 15: 2451
    • 9z Huang Q, Wu Y, Zhou Y, Liu H, Wang J, Wang S, Du P. Synthesis 2020; 52: 2535
    • 9aa Grabicki N, Nguyen KT. D, Weidner S, Dumele O. Angew. Chem. Int. Ed. 2021; 60: 14909
    • 9ab Volkmann J, Kohrs D, Bernt F, Wegner HA. Eur. J. Org. Chem. 2021; in press DOI: 10.1002/ejoc.202101357.
    • 9ac Zhang X, Shi H, Zhuang G, Wang S, Wang J, Yang S, Shao X, Du P. Angew. Chem. Int. Ed. 2021; 60: 17368
    • 9ad Wang S, Li X, Zhuang G, Chen M, Huang P, Yang S, Du P. Chem. Commun. 2021; 57: 9104
    • 9ae Li K, Xu Z, Deng H, Zhou Z, Dang Y, Sun Z. Angew. Chem. Int. Ed. 2021; 60: 7649
    • 9af Nishigaki S, Shibata Y, Nakajima A, Okajima H, Masumoto Y, Osawa T, Muranaka A, Sugiyama H, Horikawa A, Uekusa H, Koshino H, Uchiyama M, Sakamoto A, Tanaka K. J. Am. Chem. Soc. 2019; 141: 14955
  • 10 Segawa Y, Kuwayama M, Hijikata Y, Fushimi M, Nishihara T, Pirillo J, Shirasaki J, Kubota N, Itami K. Science 2019; 365: 272
    • 11a Matsui K, Segawa Y, Namikawa T, Kamada K, Itami K. Chem. Sci. 2012; 4: 84
    • 11b Kayahara E, Iwamoto T, Takaya H, Suzuki T, Fujitsuka M, Majima T, Yasuda N, Matsuyama N, Seki S, Yamago S. Nat. Commun. 2013; 4: 2694
    • 11c Matsui K, Segawa Y, Itami K. J. Am. Chem. Soc. 2014; 136: 16452
    • 12a Huang Z-A, Chen C, Yang X-D, Fan X-B, Zhou W, Tung C-H, Wu L-Z, Cong H. J. Am. Chem. Soc. 2016; 138: 11144
    • 12b Senthilkumar K, Kondratowicz M, Lis T, Chmielewski PJ, Cybińska J, Zafra JL, Casado J, Vives T, Crassous J, Favereau L, Stępień M. J. Am. Chem. Soc. 2019; 141: 7421
    • 12c Xu W, Yang X-D, Fan X-B, Wang X, Tung C-H, Wu L-Z, Cong H. Angew. Chem. Int. Ed. 2019; 58: 3943
    • 12d Schaub TA, Prantl EA, Kohn J, Bursch M, Marshall CR, Leonhardt EJ, Lovell TC, Zakharov LN, Brozek CK, Waldvogel SR, Grimme S, Jasti R. J. Am. Chem. Soc. 2020; 142: 8763
    • 12e Cong H. Chem. Lett. 2021; 50: 819
    • 12f Yang Y, Blacque O, Sato S, Juríček M. Angew. Chem. Int. Ed. 2021; 60: 13529
    • 13a Iwamoto T, Watanabe Y, Sadahiro T, Haino T, Yamago S. Angew. Chem. Int. Ed. 2011; 50: 8342
    • 13b Xia J, Bacon JW, Jasti R. Chem. Sci. 2012; 3: 3018
    • 13c Iwamoto T, Watanabe Y, Takaya H, Haino T, Yasuda N, Yamago S. Chem. Eur. J. 2013; 19: 14061
    • 13d Isobe H, Hitosugi S, Yamasaki T, Iizuka R. Chem. Sci. 2013; 4: 1293
    • 13e Sato S, Yamasaki T, Isobe H. PNAS 2014; 111: 8374
    • 13f Matsuno T, Sato S, Iizuka R, Isobe H. Chem. Sci. 2015; 6: 909
    • 13g Isobe H, Nakamura K, Hitosugi S, Sato S, Tokoyama H, Yamakado H, Ohno K, Kono H. Chem. Sci. 2015; 6: 2746
    • 13h Matsuno T, Sato S, Yokoyama A, Kamata S, Isobe H. Angew. Chem. Int. Ed. 2016; 55: 15339
    • 13i Matsuno T, Kamata S, Sato S, Yokoyama A, Sarkar P, Isobe H. Angew. Chem. Int. Ed. 2017; 56: 15020
    • 13j Matsuno T, Nakai Y, Sato S, Maniwa Y, Isobe H. Nat Commun. 2018; 9: 1907
    • 13k Sun Z, Mio T, Okada T, Matsuno T, Sato S, Kono H, Isobe H. Angew. Chem. Int. Ed. 2019; 58: 2040
    • 13l Rio J, Beeck S, Rotas G, Ahles S, Jacquemin D, Tagmatarchis N, Ewels C, Wegner HA. Angew. Chem. Int. Ed. 2018; 57: 6930
    • 13m Xu Y, Kaur R, Wang B, Minameyer MB, Gsänger S, Meyer B, Drewello T, Guldi DM, von Delius M. J. Am. Chem. Soc. 2018; 140: 13413
    • 13n Xu Y, Gsänger S, Minameyer MB, Imaz I, Maspoch D, Shyshov O, Schwer F, Ribas X, Drewello T, Meyer B, von Delius M. J. Am. Chem. Soc. 2019; 141: 18500
    • 13o Cui S, Huang Q, Wang J, Jia H, Huang P, Wang S, Du P. Org. Lett. 2019; 21: 5917
    • 13p Ubasart E, Borodin O, Fuertes-Espinosa C, Xu Y, García-Simón C, Gómez L, Juanhuix J, Gándara F, Imaz I, Maspoch D, von Delius M, Ribas X. Nat. Chem. 2021; 13: 420
    • 13q Wang S, Li X, Zhang X, Huang P, Fang P, Wang J, Yang S, Wu K, Du P. Chem. Sci. 2021; 12: 10506
    • 13r Yang Y, Huangfu S, Sato S, Juríček M. Org. Lett. 2021; 23: 7943
    • 14a Matsui K, Segawa Y, Itami K. Org. Lett. 2012; 14: 1888
    • 14b Darzi ER, Hirst ES, Weber CD, Zakharov LN, Lonergan MC, Jasti R. ACS Cent. Sci. 2015; 1: 335
    • 14c Van Raden JM, Darzi ER, Zakharov LN, Jasti R. Org. Biomol. Chem. 2016; 14: 5721
    • 14d Van Raden JM, Louie S, Zakharov LN, Jasti R. J. Am. Chem. Soc. 2017; 139: 2936
    • 14e Chen M, Unikela KS, Ramalakshmi R, Li B, Darrigan C, Chrostowska A, Liu S-Y. Angew. Chem. Int. Ed. 2021; 60: 1556
    • 15a García JC, Moral M, Pérez-Jiménez AJ. J. Phys. Chem. C 2016; 120: 9104
    • 15b Kayahara E, Sun L, Onishi H, Suzuki K, Fukushima T, Sawada A, Kaji H, Yamago S. J. Am. Chem. Soc. 2017; 139: 18480
    • 15c Lin JB, Darzi ER, Jasti R, Yavuz I, Houk KN. J. Am. Chem. Soc. 2019; 141: 952
    • 15d Leonhardt EJ, Jasti R. Nat. Rev. Chem. 2019; 3: 672
    • 15e Lv Y, Link J, Song K, Song X, Zang H, Zang Y, Zhu D. Sci. Adv. 2021; in press DOI: 10.1126/sciadv.abk3095.
  • 16 Kayahara E, Sakamoto Y, Suzuki T, Yamago S. Org. Lett. 2012; 14: 3284
  • 17 Bachrach SM, Stück D. J. Org. Chem. 2010; 75: 6595
  • 18 Segawa Y, Omachi H, Itami K. Org. Lett. 2010; 12: 2262
  • 19 Iwamoto T, Watanabe Y, Sakamoto Y, Suzuki T, Yamago S. J. Am. Chem. Soc. 2011; 133: 8354
  • 20 Scott LT. Angew. Chem. Int. Ed. 2003; 42: 4133
  • 21 Adamska L, Nayyar I, Chen H, Swan AK, Oldani N, Fernandez-Albertini S, Golder MR, Jasti R, Doorn SK, Tretiak S. Nano Lett. 2014; 14: 6539
    • 22a Segura JL, Martín N, Guldi DM. Chem. Soc. Rev. 2005; 34: 31
    • 22b Yang Z, Mao Z, Xie Z, Zhang Y, Liu S, Zhao J, Xu J, Chi Z, Aldred MP. Chem. Soc. Rev. 2017; 46: 915
    • 22c Zhang L, Qian Y, Feng R, Ding Y, Zhang Y, Guo X, Wang W, Yu G. Nat. Commun. 2020; 11: 3843
  • 23 Tang Y, Li J, Du P, Zhang H, Zheng C, Lin H, Du X, Tao S. Org. Electron. 2020; 83: 105747
    • 24a Zabula AV, Filatov AS, Xia J, Jasti R, Petrukhina MA. Angew. Chem. Int. Ed. 2013; 52: 5033
    • 24b Spisak SN, Wei Z, Darzi E, Jasti R, Petrukhina MA. Chem. Commun. 2018; 54: 7818
    • 24c Zhou Z, Wei Z, Schaub TA, Jasti R, Petrukhina MA. Chem. Sci. 2020; 11: 9395
    • 25a Thordarson P. Chem. Soc. Rev. 2011; 40: 1305
    • 25b Hibbert DB, Thordarson P. Chem. Commun. 2016; 52: 12792
    • 26a Xia Z, Pun SH, Chen H, Miao Q. Angew. Chem. Int. Ed. 2021; 60: 10311
    • 26b Wössner JS, Wassy D, Weber A, Bovenkerk M, Hermann M, Schmidt M, Esser B. J. Am. Chem. Soc. 2021; 143: 12244
  • 27 Minameyer M, Xu Y, Frühwald S, Görling A, von Delius M, Drewello T. Chem. Eur. J. 2020; 26: 8729
  • Considering that the nonpolar character of toluene prevents any electron transfer, we focused our measurements on THF, whose polarity is sufficient to power the electron transfer.
  • 29 Fujitsuka M, Lu C, Zhuang B, Kayahara E, Yamago S, Majima T. J. Phys. Chem. A 2019; 123: 4737
  • 30 Fujitsuka M, Lu C, Iwamoto T, Kayahara E, Yamago S, Majima T. J. Phys. Chem. A 2014; 118: 4527
  • 31 Guldi D.M, Prato M. Acc. Chem. Res. 2000; 33: 695
  • 32 Reed CA, Bolskar RD. Chem. Rev. 2000; 100: 1075
    • 33a Pérez EM, Martín N. Chem. Soc. Rev. 2015; 44: 6425
    • 33b Zhang B, Hernández Sánchez R, Zhong Y, Ball M, Terban MW, Paley D, Billinge SJ. L, Ng F, Steigerwald ML, Nuckolls C. Nat. Commun. 2018; 9: 1957
    • 33c Miki K, Saiki K, Umeyama T, Baek J, Noda T, Imahori H, Sato Y, Suenaga K, Ohe K. Small 2018; 14: 1800720
    • 33d Barendt TA, Ball ML, Xu Q, Zhang B, Fowler B, Schattman A, Ritter VC, Steigerwald ML, Nuckolls C. Chem. Eur. J. 2020; 26: 3744
    • 33e Balakrishna B, Menon A, Cao K, Gsänger S, Beil SB, Villalva J, Shyshov O, Martin O, Hirsch A, Meyer B, Kaiser U, Guldi DM, von Delius M. Angew. Chem. Int. Ed. 2020; 59: 18774
    • 33f Tanuma Y, Stergiou A, Bužan Bobnar A, Gaboardi M, Rio J, Volkmann J, Wegner HA, Tagmatarchis N, Ewels CP, Arčon D. Nanoscale 2021; 13: 19946