CC BY-NC-ND 4.0 · Organic Materials 2022; 4(02): 36-42
DOI: 10.1055/a-1873-5186
Supramolecular Chemistry
Original Article

Experimental and Computational Studies of Phenylene-Bridged Azaacenes as Affinity Materials for Sensing Using Quartz Crystal Microbalances

Ephraim Prantl
a   Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10 – 14, 55128 Mainz, Germany
,
Sebastian Hahn
b   Institute of Organic Chemistry, Ruprecht Karl University of Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
,
b   Institute of Organic Chemistry, Ruprecht Karl University of Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
,
a   Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10 – 14, 55128 Mainz, Germany
› Author Affiliations


Abstract

Phenylene-bridged, TIPS-alkynylated azaacenes are excellent materials for selective gas sorption. In this study, we utilized 195 MHz high-fundamental-frequency quartz crystal microbalances, coated with cyclic azaacenes, and determined their affinity towards hazardous and narcotics-related compounds such as benzene, γ-butyrolactone (GBL) or safrole. Computational investigations by extended tight binding intermolecular force field allowed better understanding of the determined unique features. Remarkable selective affinities were found towards GBL and safrole – both dangerous compounds which can be abused as precursors for narcotics. With these systematic approaches, we were able to get a better insight into the selective adsorption and how to design better affinity materials



Publication History

Received: 10 May 2022

Accepted after revision: 09 June 2022

Accepted Manuscript online:
10 June 2022

Article published online:
29 June 2022

© 2022. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Khan FI, Kr Ghoshal A. J. Loss Prev. Process Ind. 2000; 13: 527
    • 1b Pinalli R, Pedrini A, Dalcanale E. Chem. Eur. J. 2018; 24: 1010
    • 1c Lubczyk D, Hahma A, Brutschy M, Siering C, Waldvogel SR. Propellants, Explos. Pyrotech. 2015; 40: 590
  • 2 Ryvlin D, Girschikofsky M, Schollmeyer D, Hellmann R, Waldvogel SR. Global Challenges 2018; 2: 1800057
  • 3 Gimeno P, Besacier F, Bottex M, Dujourdy L, Chaudron-Thozet H. Forensic Sci. Int. 2005; 155: 141
  • 4 Brutschy M, Schneider MW, Mastalerz M, Waldvogel SR. Chem. Commun. 2013; 49: 8398
    • 5a Baur X, Ollesch T, Poschadel B, Budnik LT, Finger G SMatz. Zbl. Arbeitsmed. 2007; 57: 89
    • 5b Zampolli S, Elmi I, Mancarella F, Betti P, Dalcanale E, Cardinali GC, Severi M. Sens. Actuators, B 2009; 141: 322
    • 5c Zampolli S, Betti P, Elmi I, Dalcanale E. Chem. Commun. 2007; 27: 2790
    • 5d Clément P, Korom S, Struzzi C, Parra EJ, Bittencourt C, Ballester P, Llobet E. Adv. Funct. Mater. 2015; 25: 4011
    • 5e Dickert FL, Lieberzeit P, Miarecka SG, Mann KJ, Hayden O, Palfinger C. Biosens. Bioelectron. 2004; 20: 1040
  • 6 Lynch KL. Mass Spectrometry for the Clinical Laboratory. Amsterdam: Elsevier; 2017
    • 7a Wu C, Steiner WE, Tornatore PS, Matz LM, Siems WF, Atkinson DA, Hill HH. Talanta 2002; 57: 123
    • 7b Mäkinen MA, Anttalainen OA, Sillanpää MET. Anal. Chem. 2010; 82: 9594
  • 8 Oprea A, Weimar U. Anal. Bioanal. Chem. 2019; 411: 1761
  • 9 Oprea A, Weimar U. Anal. Bioanal. Chem. 2020; 412: 6707
    • 10a Brutschy M, Schneider MW, Mastalerz M, Waldvogel SR. Adv. Mater. 2012; 24: 6049
    • 10b Brutschy M, Stangenberg R, Beer C, Lubczyk D, Baumgarten M, Müllen K, Waldvogel SR. ChemPlusChem 2015; 80: 54
    • 10c Xu T, Xu P, Zheng D, Yu H, Li X. Anal. Chem. 2016; 88: 12234
    • 10d Girschikofsky M, Rosenberger M, Belle S, Brutschy M, Waldvogel SR, Hellmann R. Proc. SPIE–Int. Soc. Opt. Eng. 2012; 8439: 843916
    • 10e Börner S, Orghici R, Waldvogel SR, Willer U, Schade W. Appl. Opt. 2009; 48: B183
    • 10f Orghici R, Willer U, Gierszewska M, Waldvogel SR, Schade W. Appl. Phys. B 2008; 90: 355
    • 10g Orghici R, Lützow P, Burgmeier J, Koch J, Heidrich H, Schade W, Welschoff N, Waldvogel S. Sensors 2010; 10: 6788
  • 11 Brutschy M, Lubczyk D, Müllen K, Waldvogel SR. Anal. Chem. 2013; 85: 10526
  • 12 Prantl E, Kohl B, Ryvlin D, Biegger P, Wadepohl H, Rominger F, Bunz UHF, Mastalerz M, Waldvogel SR. ChemPlusChem 2019; 13: 1239
  • 13 Wessels A, Klöckner B, Siering C, Waldvogel SR. Sensors 2013; 13: 12012
    • 14a Mujahid A, Afzal A, Dickert FL. Sensors 2019; 19: 4395
    • 14b Linke A, Jungbauer SH, Huber SM, Waldvogel SR. Chem. Commun. 2015; 51: 2040
    • 15a Lubczyk D, Siering C, Lörgen J, Shifrina ZB, Müllen K, Waldvogel SR. Sens. Actuators, B 2010; 143: 561
    • 15b Lubczyk D, Grill M, Baumgarten M, Waldvogel SR, Müllen K. ChemPlusChem 2012; 77: 102
    • 16a Kohl B, Bohnwagner MV, Rominger F, Wadepohl H, Dreuw A, Mastalerz M. Chem. Eur. J. 2016; 22: 646
    • 16b Kohl B, Rominger F, Mastalerz M. Org. Lett. 2014; 16: 704
    • 16c Kohl B, Rominger F, Mastalerz M. Chem. Eur. J. 2015; 21: 17308
  • 17 Dickert FL, Bäumler UPA, Stathopulos H. Anal. Chem. 1997; 69: 1000
  • 18 Schaub TA, Prantl EA, Kohn J, Bursch M, Marshall CR, Leonhardt EJ, Lovell TC, Zakharov LN, Brozek CK, Waldvogel SR, Grimme S, Jasti R. J. Am. Chem. Soc. 2020; 142: 8763
  • 19 Bunz UHF, Freudenberg J. Acc. Chem. Res. 2019; 52: 1575
  • 20 Hahn S, Alrayyani M, Sontheim A, Wang X, Rominger F, Miljanić OŠ, Bunz UHF. Chem. Eur. J. 2017; 23: 10543
  • 21 Hahn S, Koser S, Hodecker M, Seete P, Rominger F, Miljanić OŠ, Dreuw A, Bunz UHF. Chem. Eur. J. 2018; 24: 6968
  • 22 Goddard TD, Huang CC, Meng EC, Pettersen EF, Couch GS, Morris JH, Ferrin TE. Protein Sci. 2018; 27: 14
  • 23 Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, Morris JH, Ferrin TE. Protein Sci. 2021; 30: 70
    • 24a Abbott LJ, McKeown NB, Colina CM. J. Mater. Chem. A 2013; 1: 11950
    • 24b Abbott LJ, McDermott AG, Del Regno A, Taylor RGD, Bezzu CG, Msayib KJ, McKeown NB, Siperstein FR, Runt J, Colina CM. J. Phys. Chem. B 2013; 117: 355
    • 24c Taylor RGD, Bezzu CG, Carta M, Msayib KJ, Walker J, Short R, Kariuki BM, McKeown NB. Chem. Eur. J. 2016; 22: 2466
  • 25 Fenn JB. Angew. Chem. Int. Ed. Engl. 2003; 42: 3871
  • 26 Fenn JB. Angew. Chem. 2003; 115: 3999
  • 27 Heil C, Windscheif G, Braschohs S, Flörke J, Gläser J, Lopez M, Müller-Albrecht J, Schramm U, Bargon J, Vögtle F. Sens. Actuators, B 1999; 61: 51
  • 28 Wortmann A, Kistler-Momotova A, Zenobi R, Heine MC, Wilhelm O, Pratsinis SE. J. Am. Soc. Mass Spectrom. 2007; 18: 385
  • 29 Neubig B, Briese W. Das große Quarzkochbuch. Quarze, Quarzoszillatoren, Quarz- und Oberflächenwellenfilter (SAW), Meßtechnik. Feldkirchen: Franzis; 1997
  • 30 Masel RI. Principles of Adsorption and Reaction on Solid Surfaces. New York: Wiley; 1996
  • 31 Pyka I, Ryvlin D, Waldvogel SR. ChemPlusChem 2016; 81: 926
  • 32 Bannwarth C, Ehlert S, Grimme S. J. Chem. Theory Comput. 2019; 15: 1652
  • 33 Grimme S, Bannwarth C, Caldeweyher E, Pisarek J, Hansen A. J. Chem. Phys. 2017; 147: 161708
  • 34 Grimme S, Bannwarth C, Shushkov P. J. Chem. Theory Comput. 2017; 13: 1989
  • 35 Atwood JL, Barbour LJ, Jerga A, Schottel BL. Science 2002; 298: 1000
  • 36 Swist M, Wilamowski J, Parczewski A. Forensic Sci. Int. 2005; 155: 100