CC BY-NC-ND 4.0 · Organic Materials 2022; 4(03): 102-126
DOI: 10.1055/a-1926-6340
Supramolecular Chemistry
Original Article

2,5-Diaryl 6-hydroxyphenalenones for Single-Molecule Junctions

a   Department of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056 Basel, Switzerland
,
b   Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
,
a   Department of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056 Basel, Switzerland
,
a   Department of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056 Basel, Switzerland
,
b   Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
,
a   Department of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056 Basel, Switzerland
c   Institute for Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), P. O. Box 3640, 76021 Karlsruhe, Germany
d   Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510274, P. R. of China
› Author Affiliations


Abstract

A modular access to 2,5-diaryl 6-hydroxyphenalenone derivatives is developed and demonstrated by a small series of 5 molecules. Within this series, the structures 1 and 2 expose terminal methylsulfanyl anchor groups, enabling their integration in a single-molecule junction. The modular synthesis is based on Suzuki cross-coupling of the aryl substituents as boronic acid precursors with 5,8-dibromo-2-(tert-butyl)-4,9-dimethoxy-2,3-dihydro-1H-phenalen-1-one, and the subsequent transformation of the product to the desired 2,5-diaryl 6-hydroxyphenalenone in a reduction/deprotection sequence. The new structures are fully characterized and their optical and electrochemical properties are analysed. For the derivatives 1 and 2 suitable for single-molecule junctions, the corresponding oxophenalenoxyl radicals 1R and 2R were obtained by oxidation and analysed by electron paramagnetic resonance spectroscopy. Preliminary mechanical break junction experiments with 1 display the structureʼs ability to form transient single-molecule junctions. The intention behind the molecular design is to profit from the various redox states of the structure (including the neutral radical) as a molecular switch in an electrochemically triggered single-molecule transport experiment.



Publication History

Received: 30 June 2022

Accepted after revision: 12 August 2022

Accepted Manuscript online:
17 August 2022

Article published online:
20 September 2022

© 2022. The authors. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Bondyopadhyay PK. Proc. IEEE 1998; 86: 78
  • 2 Green JE, Wook Choi J, Boukai A, Bunimovich Y, Johnston-Halperin E, DeIonno E, Luo Y, Sheriff BA, Xu K, Shik Shin Y, Tseng H-R, Stoddart JF, Heath JR. Nature 2007; 445: 414
  • 3 Canjeevaram Balasubramanyam RK, Kumar R, Ippolito SJ, Bhargava SK, Periasamy SR, Narayan R, Basak P. J. Phys. Chem. C 2016; 120: 11313
  • 4 Kano S, Yamada Y, Tanaka K, Majima Y. Appl. Phys. Lett. 2012; 100: 053101
  • 5 Park H, Park J, Lim AKL, Anderson EH, Alivisatos AP, McEuen PL. Nature 2000; 407: 57
  • 6 Park J, Pasupathy AN, Goldsmith JI, Chang C, Yaish Y, Petta JR, Rinkoski M, Sethna JP, Abruña HD, McEuen PL, Ralph DC. Nature 2002; 417: 722
  • 7 Kubatkin S, Danilov A, Hjort M, Cornil J, Brédas J-L, Stuhr-Hansen N, Hedegård P, Bjørnholm TNature. 2003 425. 698
  • 8 Elbing M, Ochs R, Koentopp M, Fischer M, von Hänisch C, Weigend F, Evers F, Weber HB, Mayor M. Proc. Natl. Acad. Sci. U. S. A. 2005; 102: 8815
  • 9 Díez-Pérez I, Hihath J, Lee Y, Yu L, Adamska L, Kozhushner MA, Oleynik II, Tao N. Nat. Chem. 2009; 1: 635
  • 10 Blum AS, Kushmerick JG, Long DP, Patterson CH, Yang JC, Henderson JC, Yao Y, Tour JM, Shashidhar R, Ratna BR. Nat. Mater. 2005; 4: 167
  • 11 Quek SY, Kamenetska M, Steigerwald ML, Choi HJ, Louie SG, Hybertsen MS, Neaton JB, Venkataraman L. Nat. Nanotechnol. 2009; 4: 230
  • 12 Pease AR, Jeppesen JO, Stoddart JF, Luo Y, Collier CP, Heath JR. Acc. Chem. Res. 2001; 34: 433
  • 13 Molen SJvan der, Liljeroth P. J. Phys.: Condens. Matter 2010; 22: 133001
  • 14 Li Z, Smeu M, Afsari S, Xing Y, Ratner MA, Borguet E. Angew. Chem. Int. Ed. 2014; 53: 1098
  • 15 Akimov AV, Kolomeisky AB. J. Phys. Chem. C 2012; 116: 22595
  • 16 Simão C, Mas-Torrent M, Casado-Montenegro J, Otón F, Veciana J, Rovira C. J. Am. Chem. Soc. 2011; 133: 13256
  • 17 Li H, Xu Q, Li N, Sun R, Ge J, Lu J, Gu H, Yan F. J. Am. Chem. Soc. 2010; 132: 5542
  • 18 Raymo FM, Giordani S, White AJP, Williams DJ. J. Org. Chem. 2003; 68: 4158
  • 19 Irie M. Chem. Rev. 2000; 100: 1685
  • 20 Weibel N, Grunder S, Mayor M. Org. Biomol. Chem. 2007; 5: 2343
  • 21 Stoddart JF, Colquhoun HM. Tetrahedron 2008; 64: 8231
  • 22 Le Pleux L, Kapatsina E, Hildesheim J, Häussinger D, Mayor M. Eur. J. Org. Chem. 2017; 2017: 3165
  • 23 Yin X, Zang Y, Zhu L, Low JZ, Liu Z-F, Cui J, Neaton JB, Venkataraman L, Campos LM. Sci. Adv. 2017; 3: eaao2615
  • 24 Wu SW, Ogawa N, Nazin GV, Ho W. J. Phys. Chem. C 2008; 112: 5241
  • 25 Osorio EA, OʼNeill K, Wegewijs M, Stuhr-Hansen N, Paaske J, Bjørnholm T, van der Zant HSJ. Nano Lett. 2007; 7: 3336
  • 26 Qiu XH, Nazin GV, Ho W. Phys. Rev. Lett. 2004; 93: 196806
  • 27 Thijssen JM, Van der Zant HSJ. Phys. Status Solidi B 2008; 245: 1455
  • 28 Tao NJ. Phys. Rev. Lett. 1996; 76: 4066
  • 29 Brandl T, El Abbassi M, Stefani D, Frisenda R, Harzmann GD, van der Zant HSJ, Mayor M. Eur. J. Org. Chem. 2019; 2019: 5334
  • 30 Dulić D, Kudernac T, Pužys A, Feringa BL, van Wees BJ. Adv. Mater. 2007; 19: 2898
  • 31 Gütlich P, Hauser A, Spiering H. Angew. Chem. Int. Ed. 1994; 33: 2024
  • 32 Šalitroš I, Madhu NT, Boča R, Pavlik J, Ruben M. Monatsh. Chem. 2009; 140: 695
  • 33 Gamez P, Costa JS, Quesada M, Aromí G. Dalton Trans. 2009; 7845
  • 34 Frisenda R, Harzmann GD, Celis Gil JA, Thijssen JM, Mayor M, van der Zant HSJ. Nano Lett. 2016; 16: 4733
  • 35 Xu B, Tao NJ. Science 2003; 301: 1221
  • 36 Hybertsen MS, Venkataraman LAcc. Chem. Res. 2016 49. 452
  • 37 Gehring P, Thijssen JM, van der Zant HSJ. Nat. Rev. Phys. 2019; 1: 381
  • 38 van Ruitenbeek JM, Alvarez A, Piñeyro I, Grahmann C, Joyez P, Devoret MH, Esteve D, Urbina C. Rev. Sci. Instrum. 1996; 67: 108
  • 39 Wang L, Wang L, Zhang L, Xiang D. Molecular-Scale Electronics : Current Status and Perspectives. Guo X. Topics in Current Chemistry Collections. Cham: Springer International Publishing; 2019: 45
  • 40 Dulić D, van der Molen SJ, Kudernac T, Jonkman HT, de Jong JJD, Bowden TN, van Esch J, Feringa BL, van Wees BJ. Phys. Rev. Lett. 2003; 91: 207402
  • 41 Whalley AC, Steigerwald ML, Guo X, Nuckolls C. J. Am. Chem. Soc. 2007; 129: 12590
  • 42 Zhou J, Wang K, Xu B, Dubi Y. J. Am. Chem. Soc. 2018; 140: 70
  • 43 Cao Y, Dong S, Liu S, Liu Z, Guo X. Angew. Chem. Int. Ed. 2013; 52: 3906
  • 44 Meng L, Xin N, Hu C, Wang J, Gui B, Shi J, Wang C, Shen C, Zhang G, Guo H, Meng S, Guo X. Nat. Commun. 2019; 10: 1450
  • 45 Roldan D, Kaliginedi V, Cobo S, Kolivoska V, Bucher C, Hong W, Royal G, Wandlowski T. J. Am. Chem. Soc. 2013; 135: 5974
  • 46 Li Y, Baghernejad M, Qusiy A-G, Zsolt Manrique D, Zhang G, Hamill J, Fu Y, Broekmann P, Hong W, Wandlowski T, Zhang D, Lambert C. Angew. Chem. 2015; 127: 13790
  • 47 Hatanaka K, Morita Y, Ohba T, Yamaguchi K, Takui T, Kinoshita M, Nakasuji K. Tetrahedron Lett. 1996; 37: 873
  • 48 Hatanaka K, Morita Y, Ohba T, Yamaguchi K, Takui T, Kinoshita M, Nakasuji K. Tetrahedron Lett. 1996; 37: 877
  • 49 Morita Y, Ohba T, Haneda N, Maki S, Kawai J, Hatanaka K, Sato K, Shiomi D, Takui T, Nakasuji K. J. Am. Chem. Soc. 2000; 122: 4825
  • 50 Morita Y, Maki S, Fukui K, Ohba T, Kawai J, Sato K, Shiomi D, Takui T, Nakasuji K. Org. Lett. 2001; 3: 3099
  • 51 Nishida S, Kawai J, Moriguchi M, Ohba T, Haneda N, Fukui K, Fuyuhiro A, Shiomi D, Sato K, Takui T, Nakasuji K, Morita Y. Chem. Eur. J. 2013; 19: 11904
  • 52 Nishida S, Kariyazono K, Yamanaka A, Fukui K, Sato K, Takui T, Nakasuji K, Morita Y. Chem. Asian J. 2011; 6: 1188
  • 53 Morita Y, Kawai J, Haneda N, Nishida S, Fukui K, Nakazawa S, Shiomi D, Sato K, Takui T, Kawakami T, Yamaguchi K, Nakasuji K. Tetrahedron Lett. 2001; 42: 7991
  • 54 Morita Y, Nishida S, Kawai J, Fukui K, Nakazawa S, Sato K, Shiomi D, Takui T, Nakasuji K. Org. Lett. 2002; 4: 1985
  • 55 Nishida S, Morita Y, Fukui K, Sato K, Shiomi D, Takui T, Nakasuji K. Angew. Chem. Int. Ed. 2005; 44: 7277
  • 56 Pyurbeeva E, Hsu C, Vogel D, Wegeberg C, Mayor M, van der Zant H, Mol JA, Gehring P. Nano Lett. 2021; 21: 9715
  • 57 Hsu C, Costi TA, Vogel D, Wegeberg C, Mayor M, van der Zant HSJ, Gehring P. Phys. Rev. Lett. 2022; 128: 147701
  • 58 Goto K, Kubo T, Yamamoto K, Nakasuji K, Sato K, Shiomi D, Takui T, Kubota M, Kobayashi T, Yakusi K, Ouyang J. J. Am. Chem. Soc. 1999; 121: 1619
  • 59 Park MS, Kim G, Won H, Han JW, Oh CH. Bull. Korean Chem. Soc. 2020; 41: 88
  • 60 Storch J, Bernard M, Sýkora J, Karban J, Čermák JEur. J. Org. Chem. 2013 2013. 260
  • 61 Hwang JP, Surya Prakash GK, Olah GA. Tetrahedron 2000; 56: 7199
  • 62 Schnürch M, Spina M, Khan AF, Mihovilovic MD, Stanetty P. Chem. Soc. Rev. 2007; 36: 1046
  • 63 Tutino F, Papeo G, Quartieri F. J. Heterocycl. Chem. 2010; 47: 112
  • 64 Subramanian LR, Martínez AG, Hanack M, Surya Prakash GK, Hu J. Encyclopedia of Reagents for Organic Synthesis. New York: John Wiley & Sons, Ltd; 2006
  • 65 Akhlaghinia B, Pourali A-R, Rahmani M. Synth. Commun. 2012; 42: 1184
  • 66 Chikkanna D, McCarthy C, Moebitz H, Pandit C, Sistla R, Subramanya H. US 20090275606 (A1), 2009
  • 67 Qiu D, Jin L, Zheng Z, Meng H, Mo F, Wang X, Zhang Y, Wang J. J. Org. Chem. 2013; 78: 1923
  • 68 Xue C-B, Li Y-L, Geng H, Pan J, Wang A, Zhang K, Yao W, Zhang F, Zhuo J. US 20140200227 (A1), 2014
  • 69 Burger M, Nishiguchi G, Rico A, Simmons RL, Tamez JV, Tanner H, Wan L. WO 2014033631 (A1), 2014
  • 70 Hinkes SPA, Klein CDP. Org. Lett. 2019; 21: 3048
  • 71 Mukhopadhyay T, Seebach D. Helv. Chim. Acta 1982; 65: 385
  • 72 Wilmarth WK, Schwartz N. J. Am. Chem. Soc. 1955; 77: 4543
  • 73 Morita Y, Nishida S, Kawai J, Takui T, Nakasuji K. Pure Appl. Chem. 2008; 80: 507
  • 74 Schweiger A, Jeschke G. Principles of Pulse Electron Paramagnetic Resonance. Oxford, New York: Oxford University Press; 2001
  • 75 Giuffredi GT, Gouverneur V, Bernet B. Angew. Chem. Int. Ed. 2013; 52: 10524
  • 76 Paul A, Borrelli R, Bouyanfif H, Gottis S, Sauvage F. ACS Omega 2019; 4: 14780
  • 77 Willems REM, Weijtens CHL, de Vries X, Coehoorn R, Janssen RAJ. Adv. Energy Mater. 2019; 9: 1803677
  • 78 Tessensohn ME, Webster RD. Electrochem. Commun. 2016; 62: 38
  • 79 Hui Y, Chng ELK, Chng CYL, Poh HL, Webster RD. J. Am. Chem. Soc. 2009; 131: 1523
  • 80 Huber R, González MT, Wu S, Langer M, Grunder S, Horhoiu V, Mayor M, Bryce MR, Wang C, Jitchati R, Schönenberger C, Calame M. J. Am. Chem. Soc. 2008; 130: 1080
  • 81 Cabosart D, El Abbassi M, Stefani D, Frisenda R, Calame M, van der Zant HSJ, Perrin ML. Appl. Phys. Lett. 2019; 114: 143102
  • 82 Untiedt C, Yanson AI, Grande R, Rubio-Bollinger G, Agraït N, Vieira S, van Ruitenbeek JM. Phys. Rev. B: Condes. Matter 2002; 66: 085418
  • 83 Hong W, Manrique DZ, Moreno-García P, Gulcur M, Mishchenko A, Lambert CJ, Bryce MR, Wandlowski T. J. Am. Chem. Soc. 2012; 134: 2292
  • 84 OʼDriscoll JL, Bryce RM. Nanoscale 2021; 13: 10668
  • 85 Leary E, Zotti LA, Miguel D, Márquez IR, Palomino-Ruiz L, Cuerva JM, Rubio-Bollinger G, González MT, Agrait N. J. Phys. Chem. C 2018; 122: 3211
  • 86 Hindenberg P, Busch M, Paul A, Bernhardt M, Gemessy P, Rominger F, Romero-Nieto C. Angew. Chem. Int. Ed. 2018; 57: 15157
  • 87 Tate DJ, Abdelbasit M, Kilner CA, Shepherd HJ, Warriner SL, Bushby RJ. Tetrahedron 2014; 70: 67
  • 88 Xu Y, Cong T, Liu P, Sun P. Org. Biomol. Chem. 2015; 13: 9742
  • 89 Kloosterziel H, Backer HJ. Recl. Trav. Chim. Pays-Bas 1953; 72: 655
  • 90 Miao R-G, Qi X, Wu X-F. Eur. J. Org. Chem. 2021; 2021: 5219