CC BY-NC-ND 4.0 · SynOpen 2022; 06(04): 219-226
DOI: 10.1055/a-1941-3801
paper

Zinc Acetate Catalyzed Stereoselective 1,2-trans-Glycosylation Using Glycosyl Chlorides

Mohammad Saif Ali
a   Organic Synthesis and Process Chemistry Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad-500007, India
,
P. I. Ramesh
a   Organic Synthesis and Process Chemistry Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad-500007, India
b   Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
,
a   Organic Synthesis and Process Chemistry Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad-500007, India
b   Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
,
a   Organic Synthesis and Process Chemistry Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad-500007, India
b   Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
› Author Affiliations
The research was supported by the Science and Engineering Research Board (SERB), DST New Delhi (RJF/2020/000083). T.M.B gratefully acknowledges the SERB for financial support in the form of a Ramanujan Fellowship. R.P.I acknowledges the Council of Scientific and Industrial Research (CSIR) for a Fellowship.


The IICT Communication Number: IICT/Pubs./2022/169.

Abstract

We report a strategy for the stereoselective synthesis of 1,2-trans-glycosides in the absence of neighboring group participation. The present protocol for the selective glycosylation mainly relies on catalyst control rather than protecting group selection. By using this protocol, several glycosides were prepared. Zinc acetate was found to be the optimal catalyst, providing the desired 1,2-trans-glycosides from glucose- and mannose-derived glycosyl halides at room temperature instead of low-temperature conditions.

Supporting Information



Publication History

Received: 11 August 2022

Accepted after revision: 07 September 2022

Accepted Manuscript online:
12 September 2022

Article published online:
12 October 2022

© 2022. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Crich D. Acc. Chem. Res. 2010; 43: 1144
    • 1b Seeberger PH. Acc. Chem. Res. 2015; 48: 1450
    • 1c Galonic DP, Gin DY. Nature 2007; 446: 1000
    • 1d Zhu X, Schmidt RR. Angew. Chem. Int. Ed. 2009; 48: 1900
    • 2a Pornsuriyasak P, Demchenko AV. Angew. Chem. Int. Ed. 2005; 44: 7123
    • 2b Nukada T, Berces A, Zgierski MZ, Whitfield DM. J. Am. Chem. Soc. 1998; 120: 13291
    • 2c Singh GP, Watson AJ. A, Fairbanks AJ. Org. Lett. 2015; 17: 4376
    • 2d Speciale G, Farren-Dai M, Shidmoossavee FS, Williams SJ, Bennet AJ. J. Am. Chem. Soc. 2016; 138: 14012
    • 2e Elferink H, Mensink RA, White PB, Boltje TJ. Angew. Chem. Int. Ed. 2016; 55: 11217
    • 3a Nukada T, Berces A, Zgierski MZ, Whitfield DM. J. Am. Chem. Soc. 1998; 120: 13291
    • 3b Jensen KJ. J. Chem. Soc., Perkin Trans. 1 2002; 2219
    • 3c Boltje TJ, Buskas T, Boons G.-J. Nat. Chem. 2009; 1: 611
  • 4 Aiguabella N, Holland MC, Gilmour R. Org. Biomol. Chem. 2016; 14: 5534
  • 5 Karak M, Joh Y, Suenaga M, Oishi T, Torikai K. Org. Lett. 2019; 21: 1221
    • 6a Helferich B, Zirner J. Chem. Ber. 1962; 95: 2604
    • 6b Bock K, Meldal M. Acta Chem. Scand., Ser. B 1983; 37: 775
    • 6c Conrow RB, Bernstein S. J. Org. Chem. 1971; 36: 863
    • 6d Ogawa T, Matsui M. Carbohydr. Res. 1976; 51: C13
    • 6e Mukherjee D, Ray PK, Chowdhury US. Tetrahedron 2001; 57: 7701
    • 6f Li C, Liang H, Zhang ZX, Wang Z, Yu L, Liu H, An F, Wang S, Ma L, Xue W. Tetrahedron 2018; 74: 3963
    • 6g Igarashi K, Honma T, Irisawa J. Carbohydr. Res. 1970; 15: 329
    • 6h Hanessian S, Banoub J. Carbohydr. Res. 1977; 53: C13
    • 6i Verlhac P, Leteux C, Toupet L, Veyrieres A. Carbohydr. Res. 1996; 291: 11
    • 6j Kaeothip S, Pornsuriyasak P, Demchenko AV. Tetrahedron Lett. 2008; 49: 1542
  • 7 Yao H, DuyVu M, Liu X.-W. Carbohydr. Res. 2019; 473: 72
    • 8a Igarashi K, Honma T, Irisawa J. Carbohydr. Res. 1970; 15: 329
    • 8b Matsuoka K, Terabatake M, Umino A, Esumi Y, Hatano K, Terunuma D, Kuzuhara H. Biomacromolecules 2006; 7: 2274
    • 9a Geringer SA, Demchenko AV. Org. Biomol. Chem. 2018; 16: 9133
    • 9b Park Y, Harper KC, Kuhl N, Kwan EE, Liu RY, Jacobsen EN. Science 2017; 355: 162
  • 10 Kulkarni SS, Gervay-Hague J. Org. Lett. 2008; 10: 4739
  • 11 Adam Chu A.-H, Minciunescu A, Bennett CS. Org. Lett. 2015; 17: 6262
    • 12a Tatina MB, Khong DT, Judeh ZM. A. Eur. J. Org. Chem. 2018; 2208
    • 12b Boettcher S, Matwiejuk M, Thiem J. Beilstein J. Org. Chem. 2012; 8: 413
  • 13 Bracinni I, Derouet C, Esnault J, Penhoat CH, Mallet JM, Michon V, Sinay P. Carbohydr. Res. 1993; 246: 23
  • 14 Wulff G, Rohle G. Angew. Chem., Int. Ed. Engl. 1974; 13: 157
    • 15a Suna G, Wua Y, Liua A, Qiua S, Zhanga W, Wangb Z, Zhang J. Synlett 2018; 29: 668
    • 15b Dong X, Chen L, Zheng Z, Ma X, Luo Z, Zhang L. Chem. Commun. 2018; 54: 8626
    • 16a Thorat BR, Gurav A, Dalvi B, Sawant A, Lokhande V, Mali SN. Curr. Chin. Chem. 2021; 1: 30
    • 16b Cai F, Wu B, Crich D. Adv. Carbohydr. Chem. Biochem. 2009; 62: 251
    • 16c Crich D, Sun SX. Tetrahedron 1998; 54: 8321
    • 16d Crich D, Sun SX. J. Am. Chem. Soc. 1997; 119: 11217
  • 17 Guo H, Si W, Li J, Yang G, Tang T, Wang Z, Tang J, Zhang J. Synthesis 2019; 51: 2984
  • 18 Geng Y, Kumar A, Faidallah HM, Albar HA, Mhkalid IA, Schmidt RR. Angew. Chem. Int. Ed. 2013; 52: 10089
  • 19 Dubey A, Sangwan R, Mandal PK. Catal. Commun. 2019; 125: 123
  • 20 Guo H, Sia W, Li J, Yang G, Tang T, Wang Z, Tang J, Zhang J. Synthesis 2019; 51: 2984