CC BY-NC-ND 4.0 · Organic Materials 2022; 4(04): 153-162
DOI: 10.1055/a-1941-7757
Supramolecular Chemistry
Original Article

An Azobenzene-Clamped Bichromophore

Nils Schmickler
a   Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
,
a   Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
,
a   Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
,
b   Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
,
a   Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
,
b   Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
,
a   Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
› Author Affiliations


Abstract

An azo-clamped nanoscale bichromophoric cyclophane is synthesized by the intramolecular Pd(II)-catalyzed coupling of the corresponding bisacetylenic precursor. The two azo moieties in the latter can adopt cis and trans configurations. Thin-layer chromatography shows only two spots, and by scanning tunneling microscopy the trans/trans and cis/cis isomers are found. The final cyclophane does not show any switching behavior at all, but dense and wide structures are visualized after adsorption to highly oriented pyrolytic graphite. Photophysical investigations of the cyclophane show that most of the fluorescence is quenched, most likely due to the azo clamp. However, bright molecules show nearly perfect single-photon emission, meaning that efficient energy transfer between the two chromophores takes place within the molecule.



Publication History

Received: 12 July 2022

Accepted after revision: 30 August 2022

Accepted Manuscript online:
12 September 2022

Article published online:
26 October 2022

© 2022. The authors. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Müllen K, Scherf U. Organic Light-Emitting Devices: Synthesis, Properties and Applications. Wiley VCH; Weinheim: 2006
  • 2 Klauk H. Organic Electronics: Materials, Manufacturing and Applications/Organic Electronics II: More Materials and Applications. Wiley VCH; Weinheim: 2006. /2012
  • 3 Cicoira F, Santato C. Organic Electronics: Emerging Concepts and Technologies.. Wiley VCH; Weinheim: 2013
  • 4 Köhler A, Bässler H. Electronic Processes in Organic Semiconductors: An Introduction. Wiley VCH; Weinheim: 2015
  • 5 Schwartz BJ. Nat. Mater. 2008; 7: 427
  • 6 Scheblykin IG. Nat. Chem. 2013; 5: 903
    • 7a Hu ZJ, Haws RT, Fei Z, Boufflet P, Heeney M, Rossky PJ, Vanden Bout DA. PNAS 2017; 114: 5113
    • 7b Raithel D, Simine L, Pickel S, Schötz K, Panzer F, Bederschneider S, Schiefer D, Lohwasser R, Köhler J, Thelakkat M, Sommer M, Köhler A, Rossky PJ, Hildner R. PNAS 2018; 115: 2699
    • 8a Noriega R, Rivnay J, Vandewal K, Koch FPV, Stingelin N, Smith P, Toney MF, Salleo A. Nat. Mater. 2013; 12: 1038
    • 8b Lupton JM. Adv. Mater. 2010; 22: 1689
  • 9 Stangl T, Wilhelm P, Schmitz D, Remmerssen K, Henzel S, Jester S-S, Höger S, Vogelsang J, Lupton JM. J. Phys. Chem. Lett. 2015; 6: 1321
  • 10 Stangl T, Bange S, Schmitz D, Würsch D, Höger S, Vogelsang J, Lupton JM. J. Am. Chem. Soc. 2013; 135: 78
  • 11 Jester S-S, Schmitz D, Eberhagen F, Höger S. Chem. Commun. 2011; 47: 8838
  • 12 Liu S, Schmitz D, Jester S-S, Borys NJ, Höger S, Lupton JM. J. Phys. Chem. B 2013; 117: 4197
  • 13 Allolio C, Stangl T, Eder T, Schmitz D, Vogelsang J, Höger S, Horinek D, Lupton JM. J. Phys. Chem. B 2018; 122: 6431
    • 15a Grave C, Schlüter D. Eur. J. Org. Chem. 2002; 3075
    • 15b Höger S. Chem. Eur. J. 2004; 10: 1320
    • 15c Zhang W, Moore JS. Angew. Chem. Int. Ed. 2006; 45: 4416
    • 15d Iyoda M, Yamakawa J, Rahman MJ. Angew. Chem. Int. Ed. 2011; 50: 10522
    • 15e Ball M, Zhang B, Zhong Y, Fowler B, Xiao S, Ng F, Steigerwal M, Nuckolls C. Acc. Chem. Res. 2019; 52: 1068
    • 16a Jeschke G, Sajid M, Schulte M, Ramezanian N, Volkov A, Zimmermann H, Godt A. J. Am. Chem. Soc. 2010; 132: 10107
    • 16b Hinderer F, May R, Jester S-S, Höger S. Macromolecules 2016; 49: 1816
  • 17 Meißner SA, Eder T, Keller TJ, Hofmeister DA, Spicher S, Jester S-S, Vogelsang J, Grimme S, Lupton JM, Höger S. Nat. Commun. 2021; 12: 6614
  • 18 Müri M, Schuermann KC, De Cola L, Mayor M. Eur. J. Org. Chem. 2009; 2009: 2562
  • 20 Glaser C. Z. Chem. 1866; 9: 308
  • 21 Zollinger H. Color Chemistry. Synthesis, Properties, and Applications of Organic Dyes and Pigments.. 3rd ed. Weinheim: Wiley-VCH; 2003
  • 22 Hartley GS. Nature 1937; 140: 281
    • 23a Hamo F, Djedaini-Pilard F, Barbot F, Len C. Tetrahedron 2009; 65: 10105
    • 23b Bandara HMD, Burdette SC. Chem. Soc. Rev. 2012; 41: 1809
    • 23c Beharry AB, Woolley GA. Chem. Soc. Rev. 2011; 40: 4422
    • 23d Merino E, Ribagorda M. Beilstein J. Org. Chem. 2012; 8: 1071
    • 23e Wagner-Wysiecka E, Łukasik N, Biernat JF, Luboch E. J. Inclusion Phenom. Macrocyclic Chem. 2018; 90: 189
    • 23f Reuter R, Wegner HA. Chem Commun. 2011; 47: 12267
  • 24 Lee S, Hua Y, Flood AH. J. Org. Chem. 2014; 79: 8383
  • 25 Jester S-S, Schmitz D, Eberhagen F, Höger S. Chem. Commun. 2011; 47: 8838 For an alternative synthetic approach, see the respective section in the Supporting Information of the present publication
  • 26 Reuter R, Hostettler N, Neuburger M, Wegner HA. Eur. J. Org. Chem. 2009; 2009: 5647
  • 27 Cojal González JD, Iyoda M, Rabe JP. Angew. Chem. Int. Ed. 2018; 57: 17038
  • 28 Zeitouny J, Belbakra A, Llanes-Pallas A, Barbieri A, Armaroli N, Bonifazi D. Chem. Commun. 2011; 47: 451
  • 29 Eder T, Vogelsang J, Bange S, Remmerssen K, Schmitz D, Jester S-S, Keller TJ, Höger S, Lupton JM. Angew. Chem. Int. Ed. 2019; 58: 18898
  • 30 Liu X, Chi W, Qiao Q, Kokate SV, Cabrera EP, Xu Z, Liu X, Chang Y-T. ACS Sens. 2020; 5: 731
  • 31 Freixas VM, Wilhelm P, Nelson T, Hinderer F, Höger S, Tretiak S, Lupton JM, Fernandez-Alberti S. J. Phys. Chem. A. 2021; 125: 8404
  • 32 Hofkens J, Cotlet M, Vosch T, Tinnefeld P, Weston Kenneth D, Ego C, Grimsdale A, Müllen K, Beljonne D, Brédas JL, Jordens S, Schweitzer G, Sauer M, De Schryver F. PNAS 2003; 100: 13146
  • 33 Höger S. Liebigs Ann. Recl. 1997; 1997: 273
    • 34a Höger S, Bonrad K. J. Org. Chem. 2000; 65: 2243
    • 34b Gaefke G, Höger S. Synthesis 2008; 14: 2155
  • 35 Lee S, Hua Y, Flood AH. J. Org. Chem. 2014; 79: 8383