CC BY-NC-ND 4.0 · SynOpen 2022; 06(04): 306-311
DOI: 10.1055/a-1952-4557
paper

Practical, Multigram Preparation of Synthetically Useful, Enantiomerically Pure Building-Blocks from Quinic Acid

Shen Tan
a   Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, P. R. of China
,
Ping Lan
a   Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, P. R. of China
,
a   Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, P. R. of China
b   Guangdong Key Laboratory for Research and the Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, P. R. of China
,
Lorenzo V. White
a   Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, P. R. of China
› Institutsangaben
We thank the National Natural Science Foundation of China (Grant Nos. 22250410258 and 22250410259) and the Ministry of Science and Technology of the People’s Republic of China for financial support.


Abstract

The naturally abundant, enantiomerically pure cyclitol quinic acid has been converted into a synthetically useful enone in nearly quantitative yield using the operationally straightforward and reproducible protocols reported herein. The latter compound, which was obtained in multigram quantities, engages in a diastereoselective 1,2-addition reaction with a hydrazone-based nucleophile. Furthermore, a readily derived α-iodoenone participates in both cross-coupling and α,β-annulation reactions. The results reported here emphasize that the now practically accessible cyclohexenones are useful, enantiomerically pure building blocks for organic synthesis.

Supporting Information



Publikationsverlauf

Eingereicht: 19. September 2022

Angenommen nach Revision: 28. September 2022

Accepted Manuscript online:
28. September 2022

Artikel online veröffentlicht:
21. November 2022

© 2022. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Barco A, Benetti S, De Risi C, Marchetti P, Pollini GP, Zanirato V. Tetrahedron: Asymmetry 1997; 8: 3515
    • 1b Mulzer J, Drescher M, Enev VS. Curr. Org. Chem. 2008; 12: 1613
    • 1c Enev V. Chiral Pool Syntheses: Chiral Pool Synthesis from Quinic Acid . In Comprehensive Chirality, Vol. 2. Carreira EM, Yamamoto H. Elsevier; Amsterdam: 2012: 325-345
    • 1d Clifford MN, Jaganath IB, Ludwig IA, Crozier A. Nat. Prod. Rep. 2017; 34: 1391
    • 1e Liu W, Li J, Zhang X, Zu Y, Yang Y, Liu W, Xu Z, Gao H, Sun X, Jiang X, Zhao Q. J. Agric. Food Chem. 2020; 68: 10489
    • 1f Zhang Z.-J, Morris-Natschke SL, Cheng Y.-Y, Lee K.-H, Li R.-T. Med. Res. Rev. 2020; 40: 2290
    • 2a Audia JE, Boisvert L, Patten AD, Villalobos A, Danishefsky SJ. J. Org. Chem. 1989; 54: 3738
    • 2b Wang Z.-X, Miller SM, Anderson OP, Shi Y. J. Org. Chem. 1999; 64: 6443
    • 2c Barros MT, Matias PM, Maycock CD, Ventura MR. Org. Lett. 2003; 5: 4321
    • 2d Zhang W, Baranczak A, Sulikowski GA. Org. Lett. 2008; 10: 1939
    • 2e Hong A.-W, Cheng T.-H, Raghukumar V, Sha C.-K. J. Org. Chem. 2008; 73: 7580
    • 2f Maycock CD, Rodrigues P, Ventura MR. J. Org. Chem. 2014; 79: 1929
    • 2g Kawashima H, Sakai M, Kaneko Y, Kobayashi Y. Tetrahedron 2015; 71: 2387
    • 2h Li M, Li Y, Ludwik KA, Sandusky ZM, Lannigan DA, O’Doherty GA. Org. Lett. 2017; 19: 2410
    • 2i Nagamalla S, Johnson DK, Sathyamoorthi S. Med. Chem. Res. 2021; 30: 1348
    • 3a Banwell MG, Edwards AJ, Essers M, Jolliffe KA. J. Org. Chem. 2003; 68: 6839
    • 3b Banwell MG, Hungerford NL, Jolliffe KA. Org. Lett. 2004; 6: 2737
    • 3c Lan P, Ye S, Banwell MG. Chem. Asian J. 2019; 14: 4001 ; and references cited therein
  • 4 For related concerns reported by others, see: Gartman JA, Tambar UK. J. Org. Chem. 2021; 86: 11237
  • 5 Trost BM, Romero AG. J. Org. Chem. 1986; 51: 2332
  • 6 Zhong Y.-L, Shing TK. M. J. Org. Chem. 1997; 62: 2622
  • 7 Colas C, Quiclet-Sire B, Cléophax J, Delaumény J.-M, Sepulchre AM, Cero SD. J. Am. Chem. Soc. 1980; 102: 857
  • 8 Johnson CJ, Adams JP, Braun MP, Senanayake CB. W, Wovkulich PM, Uskokovic MR. Tetrahedron Lett. 1992; 33: 917
    • 9a Biechy A, Hachisu S, Quiclet-Sire B, Ricard L, Zard SZ. Angew. Chem. Int. Ed. 2008; 47: 1436
    • 9b Callier-Dublanchet A.-C, Quiclet-Sire B, Zard SZ. Tetrahedron Lett. 1995; 36: 8791
  • 10 Khan F, Dlugosch M, Liu X, Banwell MG. Acc. Chem. Res. 2018; 51: 1784 ; and references cited therein
  • 11 N-Hydroxyindoles have been encountered previously during these types of reductive cyclization reactions, see: Tan SH, Banwell MG, Willis AC, Reekie TA. Org. Lett. 2012; 14: 5621
  • 12 Chen Y, Gardiner MG, Lan P, Banwell MG. J. Org. Chem. 2022; 87: 6146
  • 13 For example, in another mode of annulation, Maycock et al. have shown (ref. 2f) that compound 2 functions as an effective Diels–Alder dienophile in reactions with cyclopentadiene.