CC BY-NC-ND 4.0 · Organic Materials 2022; 4(04): 255-260
DOI: 10.1055/a-1977-1765
Supramolecular Chemistry
Short Communication

Observation of Rare Tri6Di9 Imine Cages Using Highly Fluorinated Building Blocks

a   Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
,
b   Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, United Kingdom
,
LauraHorst zur zur
c   Kekulé-Institut für Organische Chemie und Biochemie der Universität Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
,
d   Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
,
d   Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
,
b   Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, United Kingdom
,
a   Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
› Author Affiliations


Abstract

The first synthesis of organic Tri 6 Di 9 cages is presented. Two structurally distinct Tri 6 Di 9 cages were synthesised by combining a highly fluorinated aldehyde with two ditopic amines. Although the pure compounds could not be isolated despite many attempts, the information obtained is critical for the future design of large supramolecular structures. Computational and experimental methods indicate that the addition of perfluorinated aromatic linkers in the assembly of porous organic cages opens up new possibilities for influencing the reaction pathway towards rare and unknown structures.



Publication History

Received: 17 October 2022

Accepted after revision: 09 November 2022

Accepted Manuscript online:
11 November 2022

Article published online:
13 December 2022

© 2022. The authors. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Kunde T, Pausch T, Schmidt BM. Eur. J. Org. Chem. 2021; 43: 5844
    • 1b Kunde T, Nieland E, Schröder HV, Schalley CA, Schmidt BM. Chem. Commun. 2020; 56: 4761
    • 1c Beuerle F, Gole B. Angew. Chem. Int. Ed. 2018; 57: 4850
    • 1d Greenaway RL, Santolini V, Bennison MJ, Alston BM, Pugh CJ, Little MA, Miklitz M, Eden-Rump EGB, Clowes R, Shakil A, Cuthbertson HJ, Armstrong H, Briggs ME, Jelfs KE, Cooper AI. Nat. Commun. 2018; 9: 1
    • 1e Hasell T, Cooper AI. Nat. Rev. Mater. 2016; 1: 16053
    • 2a Yang M, Qiu F, El-Sayed ESM, Wang W, Du S, Su K, Yuan D. Chem. Sci. 2021; 12: 13307
    • 2b Acharyya K, Mukherjee PS. Angew. Chem. Int. Ed. 2019; 58: 8640
    • 2c Liu Y, Zhao W, Chen CH, Flood AH. Science 2019; 365: 159
    • 2d Lee S, Yang A, Moneypenny TP, Moore JS. J. Am. Chem. Soc. 2016; 138: 2182
    • 2e Zhang G, Mastalerz M. Chem. Soc. Rev. 2014; 43: 1934
    • 2f Stefankiewicz AR, Sambrook MR, Sanders JKM. Chem. Sci. 2012; 3: 2326
  • 3 Zhang G, Presly O, White F, Oppel IM, Mastalerz M. Angew. Chem. Int. Ed. 2014; 53: 5126
  • 4 Santolini V, Miklitz M, Berardo E, Jelfs KE. Nanoscale 2017; 9: 5280
    • 5a Schick THG, Rominger F, Mastalerz M. J. Org. Chem. 2020; 85: 13757
    • 5b Acharyya K, Mukherjee S, Mukherjee PS. J. Am. Chem. Soc. 2013; 135: 554
    • 5c Mastalerz M, Schneider MW, Oppel IM, Presly O. Angew. Chem. Int. Ed. 2011; 50: 1046
    • 5d Mateus P, Delgado R, Brandão P, Carvalho S, Félix V. Org. Biomol. Chem. 2009; 7: 4661
    • 5e Francesconi O, Ienco A, Moneti G, Nativi C, Roelens S. Angew. Chem. Int. Ed. 2006; 45: 6693
    • 6a Kunde T, Pausch T, Schmidt BM. Chem. Eur. J. 2021; 27: 8457
    • 6b Elbert SM, Regenauer NI, Schindler D, Zhang W-S, Rominger F, Schröder RR, Mastalerz M. Chem. Eur. J. 2018; 24: 11438
    • 6c Schneider MW, Oppel IM, Ott H, Lechner LG, Hauswald HJS, Stoll R, Mastalerz M. Chem. Eur. J. 2012; 18: 836
    • 7a Hähsler M, Mastalerz M. Chem. Eur. J. 2021; 27: 233
    • 7b Ivanova S, Köster E, Holstein JJ, Keller N, Clever GH, Bein T, Beuerle F. Angew. Chem. Int. Ed. 2021; 60: 17455
    • 7c Wagner P, Rominger F, Zhang WS, Gross JH, Elbert SM, Schröder RR, Mastalerz M. Angew. Chem. Int. Ed. 2021; 60: 8896
    • 8a Lauer JC, Pang Z, Janßen P, Rominger F, Kirschbaum T, Elstner M, Mastalerz M. ChemistryOpen 2020; 9: 183
    • 8b Alexandre PE, Zhang WS, Rominger F, Elbert SM, Schröder RR, Mastalerz M. Angew. Chem. Int. Ed. 2020; 59: 19675
    • 8c Liu M, Zhang L, Little MA, Kapil V, Ceriotti M, Yang S, Ding L, Holden DL, Balderas-Xicohténcatl R, He D, Clowes R, Chong SY, Schütz G, Chen L, Hirscher M, Cooper AI. Science 2019; 366: 613
    • 8d Corcoran Jr EW, Calabro DC, Chong SY, Chen L, Clowes R, Hasell T, Cooper AI. Angew. Chem. Int. Ed. 2018; 57: 11228
    • 8e Giri N, Del Pópolo MG, Melaugh G, Greenaway RL, Rätzke K, Koschine T, Pison L, Gomes MFC, Cooper AI, James SL. Nature 2015; 527: 216
    • 8f Ding H, Yang Y, Li B, Pan F, Zhu G, Zeller M, Yuan D, Wang C. Chem. Commun. 2015; 51: 1976
    • 8g Mitra T, Jelfs KE, Schmidtmann M, Ahmed A, Chong SY, Adams DJ, Cooper AI. Nat. Chem. 2013; 5: 276
  • 9 Lavendomme R, Ronson TK, Nitschke JR. J. Am. Chem. Soc. 2019; 141: 12147
  • 10 Maglic JB, Lavendomme R. J. Appl. Crystallogr. 2022; 55: 1033
  • 11 Turcani L, Tarzia A, Szczypiński FT, Jelfs KE. J. Chem. Phys. 2021; 154: 214102
  • 12 Harder E, Damm W, Maple J, Wu C, Reboul M, Xiang JY, Wang L, Lupyan D, Dahlgren MK, Knight JL, Kraus JW, Cerutti DS, Krilov G, Jorgensen WL, Abel R, Friesner RA. J. Chem. Theory Comput. 2016; 12: 281
  • 13 Schrödinger Release 2022 – 3: MacroModel. Schrödinger LLC. New York, NY: 2021
  • 14 General procedure: Synthesis of the cage mixture Tri 4 Di 6 and Tri 6 Di 9: Aldehyde 1 (303.20 mg, 0.50 mmol, 1.00 equiv) was dissolved in dry CHCl3 (60 mL) and (R,R)-1,2-diaminocyclohexane 2 (79.90 mg, 0.75 mmol, 1.50 equiv) dissolved in 60 mL CHCl3 was added dropwise to the reaction mixture. The resulting solution was stirred at room temperature for 3 days, during which a bright yellow colour developed. Half of the solvent was evaporated under reduced pressure at room temperature, and n-hexane was added to the solution, resulting in the precipitation of a bright yellow solid. The solid was isolated by filtration and washed with n-hexane to yield Tri 4 Di 6 in a mixture with the larger Tri 6 Di 9 cage (216.90 mg, 60‍%) as a yellow solid. 1H NMR (600 MHz, CDCl3) [δ in ppm] 8.43 (s, 12 H, CHN), 7.65 (s, 12 H, Ar-H), 3.53 (s, 12 H, CH-N), 1.91 (s, 48 H, CH2 -cyhex). 19F NMR (282 MHz, CDCl3) [δ in ppm] −142.69 – −143.39 (m, 24F, Finner ), −143.75 (tt, J = 25.4, 13.1 Hz, 24F, Fouter ). Due to the very poor solubility, no 13C NMR spectrum could be recorded. DOSY: Diffusion coefficient D = 2.65 × 10−10 m2 s−1. MALDI MS: [Tri 4 Di 6+H]+ calculated: 2893.625 m/z, found: 2893.660 m/z; [Tri 6 Di 9+H]+ calculated: 4339.940 m/z, found: 4339.788 m/z. FT-IR (ATR): ν̃(cm−1) = 2933.73, 2860.43, 2358.94, 2158.35, 1643.35, 1602.85, 1494.83, 1471.69, 1423.47, 1388.75, 1346.31, 1301.95, 1199.72, 1176.58, 1091.71, 1033.85, 991.41, 968.27, 927.76, 891.11, 858.32, 800.46, 777.31, 721.38, 700.16, 677.01, 632.65, 609.51.