Synlett 2023; 34(04): 293-300
DOI: 10.1055/a-1983-1750
synpacts

Reassembly of Unsaturated C–C Bonds by a Cutting/Insertion Cascade

Ying Xu
a   Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, P. R. of China
,
Ling Li
a   Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, P. R. of China
,
Min Zhao
a   Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, P. R. of China
,
Yaojia Jiang
a   Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, P. R. of China
b   Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. of China
› Author Affiliations
The authors gratefully acknowledge funding from the National Natural Science Foundation of China (21971112) and the Starting Funding of Research from Guizhou University.


Abstract

The reassembly of unsaturated C–C bonds has attracted widespread attention from synthetic chemists due to its advantages of unique reactivity, easy handling, and high atom and step economies. We recently explored a cutting/insertion cascade as a means of introducing a new C1 source and constructing functionalized 1,4-keto aldehyde and 2H-furan derivatives through cyclopropanation of enamines with various carbene precursors and subsequent ring-opening reactions in situ. Aminocyclopropanes are believed to be involved as key intermediates in these transformations. This Synpacts article outlines our recent contributions to this increasingly important research area.

1 Introduction

2 Cleavage of Enamine C=C Double Bonds and Hydrolysis to 1,4-Keto Aldehydes

3 Cleavage of Enamine C=C Double Bonds and Cyclization to 2H-Furans

4 Cleavage of Ynone/Ynoate C≡C Triple Bonds

5 Conclusion



Publication History

Received: 09 November 2022

Accepted after revision: 20 November 2022

Accepted Manuscript online:
20 November 2022

Article published online:
13 December 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Xue Y, Dong G. Acc. Chem. Res. 2022; 55: 2341
    • 1b Xu Y, Dong G. Chem 2020; 6: 10
    • 1c Xia Y, Lu G, Liu P, Dong G. Nature 2016; 539: 546
    • 1d Deng L, Dong G. Trends Chem. 2020; 2: 183
    • 1e Long Y, Su Z, Zheng Y, He S, Zhong J, Xiang H, Zhou X. ACS Catal. 2020; 10: 3398
    • 1f He T, Chen D, Qian S, Zheng Y, Huang S. Org. Lett. 2021; 23: 6525
    • 2a Crabtree RH. Chem. Rev. 1985; 85: 245
    • 2b Webster DE. Adv. Organomet. Chem. 1977; 15: 147
    • 3a Miyamoto K, Tada N, Ochiai M. J. Am. Chem. Soc. 2007; 129: 2772
    • 3b Vougioukalakis GC, Grubbs RH. Chem. Rev. 2010; 110: 1746
    • 3c Wang T, Jiao N. J. Am. Chem. Soc. 2013; 135: 11692
    • 3d Ludwig JB, Zimmerman PM, Gianino JB, Schindler CS. Nature 2016; 533: 374
    • 3e Griffith AK, Vanos CM, Lambert TH. J. Am. Chem. Soc. 2012; 134: 18581
    • 4a Calderon N. Acc. Chem. Res. 1972; 5: 127
    • 4b Hong SH, Sander DP, Lee CW, Grubbs RH. J. Am. Chem. Soc. 2005; 127: 17160
    • 4c Rosebrugh LE, Herbert MB, Marx VM, Keitz BK, Grubbs RH. J. Am. Chem. Soc. 2013; 135: 1276
    • 4d Ogba OM, Warner NC, O’Leary DJ, Grubbs RH. Chem. Soc. Rev. 2018; 47: 4510
    • 4e Turczel G, Kovács E, Merza G, Coish P, Anastas PT, Tuba R. ACS Sustainable Chem. Eng. 2019; 7: 33
    • 6a Theunissen C, Ashley MA, Rovis T. J. Am. Chem. Soc. 2019; 141: 6791
    • 6b Ruffoni A, Hampton C, Simonetti M, Leonori D. Nature 2022; 610: 81
    • 6c Wise DE, Gogarnoiu ES, Duke AD, Paolillo JM, Vacala TL, Hussain WA, Parasram M. J. Am. Chem. Soc. 2022; 144: 15437
    • 6d Patra T, Wirth T. Angew. Chem. Int. Ed. 2022; 61: e202213772
    • 7a Gómez-Gallego M, Mancheño MJ, Sierra MA. Acc. Chem. Res. 2005; 38: 44
    • 7b Jiang Y, Sun R, Tang X.-Y, Shi M. Chem. Eur. J. 2016; 22: 17910
    • 7c Zhou S, Li J, Schlangen M, Schwarz H. Acc. Chem. Res. 2016; 49: 494
    • 8a Li C, Zeng Y, Zhang H, Feng J, Zhang Y, Wang J. Angew. Chem. Int. Ed. 2010; 49: 6413
    • 8b Zhou B, Chen Z, Yang X, Ai W, Tang H, Wu Y, Zhu W, Li Y. Angew. Chem. Int. Ed. 2015; 54: 12121
    • 8c Zheng H, Doyle MP. Angew. Chem. Int. Ed. 2019; 58: 12502
    • 8d Wang X, Abrahams QM, Zavalij PY, Doyle MP. Angew. Chem. Int. Ed. 2012; 51: 5907
    • 8e Jana S, Pei C, Empel C, Koenigs RM. Angew. Chem. Int. Ed. 2021; 60: 13271
    • 9a Mata S, López LA, Vicente R. Angew. Chem. Int. Ed. 2017; 56: 7930
    • 9b Cai B.-G, Chen Z.-L, Xu G.-Y, Xuan J, Xiao W.-J. Org. Lett. 2019; 21: 4234
    • 10a Miege F, Meyer C, Cossy J. Angew. Chem. Int. Ed. 2011; 50: 5932
    • 10b Jurberg ID, Davies HM. L. Chem. Sci. 2018; 9: 5112
    • 10c Yang Z, Stivanin ML, Jurberg ID, Koenigs RM. Chem. Soc. Rev. 2020; 49: 6833
    • 10d Klöpfer V, Eckl R, Floß J, Roth PM. C, Reiser O, Barham JP. Green Chem. 2021; 23: 6366
    • 11a Masarwa A, Stanger A, Marek I. Angew. Chem. Int. Ed. 2007; 46: 8039
    • 11b Xiao T, Mei M, He Y, Zhou L. Chem. Commun. 2018; 54: 8865
    • 11c Zhou Y, Trewyn BG, Angelici RJ, Woo LK. J. Am. Chem. Soc. 2009; 131: 11734
    • 12a Reisman SE, Nani RR, Levin S. Synlett 2011; 2437
    • 12b Duchemina C, Cramer N. Chem. Sci. 2019; 10: 2773
    • 12c Chauhan J, Ravva MK, Gremaud L, Sen S. Org. Lett. 2020; 22: 4537
    • 12d Sharland JC, Dunstan D, Majumdar D, Gao JH, Tan K, Malik HA, Davies HM. L. ACS Catal. 2022; 12: 12530
    • 13a Li M, Sun Y, Xie Y, Yu Y, Huang F, Huang H. Chem. Commun. 2020; 56: 11050
    • 13b Bagle PN, Mane MV, Sancheti SP, Gade AB, Shaikh SR, Baik M.-H, Patil NT. Org. Lett. 2018; 21: 335
    • 13c Li W, Yang Y, Tang Z, Yu X, Lin J, Jin Y. J. Org. Chem. 2022; 87: 13352
    • 14a Huang W, Keess S, Molander GA. Chem. Sci. 2022; 13: 11936
    • 14b Zhang Y, Niu Y, Guo Y, Wang J, Zhang Y, Liu S, Shen X. Angew. Chem. Int. Ed. 2022; 61: e202212201
    • 14c Yu X.-Y, Chen J.-R, Xiao W.-J. Chem. Rev. 2021; 121: 506
    • 15a Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
    • 15b Skubi KL, Blum TR, Yoon TP. Chem. Rev. 2016; 116: 10035
    • 15c Chen Y, Lu L.-Q, Yu D.-G, Zhu C.-J, Xiao W.-J. Sci. China Chem. 2019; 62: 24
    • 17a Yorimitsu H, Oshima K. Bull. Chem. Soc. Jpn. 2009; 82: 778
    • 17b Nogi K, Yorimitsu H. Chem. Rev. 2021; 121: 345
  • 18 O’Brien M, Baxendale IR, Ley SV. Org. Lett. 2010; 12: 1596
    • 19a Grubbs RH, Miller SJ, Fu GC. Acc. Chem. Res. 1995; 28: 446
    • 19b Hoveyda AH, Zhugralin AR. Nature 2007; 450: 243
    • 19c Bidange J, Fischmeister C, Bruneau C. Chem. Eur. J. 2016; 22: 12226
    • 20a Filippov IP, Titov GD, Rostovskii NV. Synthesis 2020; 52: 3564
    • 20b Yadagiri D, Rivas M, Gevorgyan V. J. Org. Chem. 2020; 85: 11030
    • 20c Kim JH, Gensch T, Zhao DB, Stegemann L, Strassert CA, Glorius F. Angew. Chem. Int. Ed. 2015; 54: 10975
    • 21a Furniel LG, Echemendía R, Burtoloso AC. B. Chem. Sci. 2021; 12: 7453
    • 21b Wu X, Sun S, Yu J.-T, Cheng J. Synlett 2019; 30: 21
    • 21c Barday M, Janot C, Halcovitch NR, Muir J, Aïssa C. Angew. Chem. Int. Ed. 2017; 56: 13117
    • 21d Leveille AN, Echemendía R, Mattson AE, Burtoloso AC. B. Org. Lett. 2021; 23: 9446
    • 22a Zhang Y, Zhang Y, Ye C, Qi X, Wu L.-Z, Shen X. Nat. Commun. 2022; 13: 6111
    • 22b Ye J.-H, Quach L, Paulisch T, Glorius F. J. Am. Chem. Soc. 2019; 141: 16227
    • 22c Sakurai S, Inagaki T, Kodama T, Yamanaka M, Tobisu M. J. Am. Chem. Soc. 2022; 144: 1099
    • 22d Zhang Y, Zhou G, Gong X, Guo Z, Qi X, Shen X. Angew. Chem. Int. Ed. 2022; 61: e202202175
    • 22e Stuckhardt C, Wissing M, Studer A. Angew. Chem. Int. Ed. 2021; 60: 18605
    • 23a Dattatri Dattatri, Singam MK. R, Nanuboluc JB. N, Reddy MS. Org. Biomol. Chem. 2022; 20: 6363
    • 23b Luo K, Mao S, He K, Yu X, Pan J, Lin J, Shao Z, Jin Y. ACS Catal. 2020; 10: 3733
    • 24a DeMartino MP, Chen K, Baran PS. J. Am. Chem. Soc. 2008; 130: 11546
    • 24b Davies SS, Amarnath V, Brame CJ, Boutaud O, Roberts LJ. II. Nat. Protoc. 2007; 2: 2079
  • 25 Ni M, Zhang J, Liang X, Jiang Y, Loh T.-P. Chem. Commun. 2017; 53: 12286
  • 26 Chen J, Guo P, Zhang J, Rong J, Sun W, Jiang Y, Loh T.-P. Angew. Chem. Int. Ed. 2019; 58: 12674
    • 27a Ross RJ, Jeyaseelan R, Lautens M. Org. Lett. 2020; 22: 4838
    • 27b Guo P, Sun W, Liu Y, Li Y.-X, Loh T.-P, Jiang Y. Org. Lett. 2020; 22: 5978
  • 28 Chen J, Han J, Wu T, Zhang J, Li M, Xu Y, Zhang J, Jiao Y, Yang Y, Jiang Y. Org. Chem. Front. 2022; 9: 1820
    • 29a Delcamp JH, Gormisky PE, White MC. J. Am. Chem. Soc. 2013; 135: 8460
    • 29b Harned AM, Volp KA. Nat. Prod. Rep. 2011; 28: 1790
    • 29c Zorn H, Langhoff S, Scheibner M, Nimtz M, Berger RG. Biol. Chem. 2003; 384: 1049
  • 30 Diver ST. Giessert A. J. Chem. Rev. 2004; 104: 1317
  • 31 Shang X, Liu Z.-Q. Chem. Soc. Rev. 2013; 42: 3253
  • 32 Jiang C, Wu J, Han J, Chen K, Qian Y, Zhang Z, Jiang Y. Chem. Commun. 2021; 57: 5710
    • 33a Li X, Hou Y, Meng X, Ge C, Ma H, Li J, Fang J. Angew. Chem. Int. Ed. 2018; 57: 6141
    • 33b Hansen MR, Hurley LH. Acc. Chem. Res. 1996; 29: 249
    • 33c Li D.-F, Hu P.-P, Liu M.-S, Kong X.-L, Zhang J.-C, Hider RC, Zhou T. J. Agric. Food Chem. 2013; 61: 6597
    • 33d Caturla F, Jiménez J.-M, Godessart N, Amat M, Cárdenas A, Soca L, Beleta J, Ryder H, Crespo MI. J. Med. Chem. 2004; 47: 3874
    • 33e Puerta DT, Mongan J, Tran BL, McCammon JA, Cohen SM. J. Am. Chem. Soc. 2005; 127: 14148
    • 33f Carnaghan RB. A, Hartley RD, O’Kelly J. Nature 1963; 200: 1101
    • 34a Evans DA, Sweeney ZK, Rovis T, Tedrow JS. J. Am. Chem. Soc. 2001; 123: 12095
    • 34b Zhou J.-L, Liang Y, Deng C, Zhou H, Wang Z, Sun X.-L, Zheng J.-C, Yu Z.-X, Tang Y. Angew. Chem. Int. Ed. 2011; 50: 7874
    • 35a Dou G.-Y, Jiang Y.-Y, Xu K, Zeng C.-C. Org. Chem. Front. 2019; 6: 2392
    • 35b Proctor RS. J, Phipps RJ. Angew. Chem. Int. Ed. 2019; 58: 13666
    • 35c O’Brien AG, Maruyama A, Inokuma Y, Fujita M, Baran PS, Blackmond DG. Angew. Chem. Int. Ed. 2014; 53: 11868
    • 35d Hamadi NB. J. Fluorine Chem. 2015; 170: 47
    • 36a Furuya T, Kamlet AS, Ritter T. Nature 2011; 473: 470
    • 36b Prakash GK. S, Jog PV, Batamack PT. D, Olah GA. Science 2012; 338: 1298
    • 36c Liang T, Neumann CN, Ritter T. Angew. Chem. Int. Ed. 2013; 52: 8214
  • 37 Liang X, Guo P, Yang W, Jiang C, Sun W, Loh T.-P, Jiang Y. Chem. Commun. 2020; 56: 2043
    • 38a Xie Y, Chi H.-W, Guan A.-Y, Liu C.-L, Ma H.-J, Cui D.-L. J. Agric. Food Chem. 2014; 62: 12491
    • 38b Chen J, Yi C, Wang S, Wu S, Li S, Hu D, Song B. Bioorg. Med. Chem. Lett. 2019; 29: 1203
    • 38c Cai M, Li Z, Fan F, Huang Q, Shao X, Song G. J. Agric. Food Chem. 2010; 58: 2624
    • 38d Nugent BM, Buysse AM, Loso MR, Babcock JM, Johnson TC, Oliver MP, Martin TP, Ober MS, Breaux N, Robinson A, Adelfinskaya Y. Pest Manage. Sci. 2015; 71: 928
    • 39a Ferraris D, Duvall B, Delahanty G, Mistry B, Alt J, Rojas C, Rowbottom C, Sanders K, Schuck E, Huang K.-C, Redkar S, Slusher BB, Tsukamoto T. J. Med. Chem. 2014; 57: 2582
    • 39b Cacciamani T, Vita A, Cristalli G, Vincenzetti S, Natalini P, Ruggieri S, Amici A, Magni G. Arch. Biochem. Biophys. 1991; 290: 285
  • 40 Wang F, Fu R, Chen J, Rong J, Wang E, Zhang J, Zhang Z, Jiang Y. Chem. Commun. 2022; 58: 3477
  • 41 Ying JB, Liu T, Liu Y, Wan J.-P. Org. Lett. 2022; 24: 2404
  • 42 Sheng H, Chen Z, Li X, Su J, Song Q. Org. Chem. Front. 2022; 9: 3000
  • 43 Chen Z, Xie X, Chen W, Luo N, Li X, Yu F, Huang J. Org. Biomol. Chem. 2022; 20: 8037
  • 44 Rong J, Li H, Fu R, Sun W, Loh T.-P, Jiang Y. ACS Catal. 2020; 10: 3664