Subscribe to RSS
DOI: 10.1055/a-2079-1740
Das biomechanische E-Staging: In-vivo-Biomechanik beim Keratokonus
Article in several languages: English | deutschAuthors

Zusammenfassung
Die ABCD-Klassifikation des Keratokonus nach Belin ermöglicht eine Stadieneinteilung des Keratokonus basierend auf den Kriterien Vorder- (A) und Rückflächenverkrümmung (B), dünnster Pachymetrie (C) und bestkorrigiertem Visus mit Brille (D). Diese Parameter ermöglichen auch eine Progressionsbeurteilung, berücksichtigen jedoch nicht die korneale Biomechanik. Die korneale Biomechanik ermöglicht mit dem Corvis ST (Oculus, Wetzlar, Deutschland) zunächst die Trennung zwischen gesunden und Keratokonus-Hornhäuten mittels Corvis Biomechanischem Index (CBI) und Tomografisch-Biomechanischem Index (TBI). Bei hoher Reliabilität der Corvis-ST-Messungen in unterschiedlichen Keratokonus-Stadien wurde daher ein biomechanischer Parameter für Keratokonus-Hornhäute entwickelt, der eine biomechanische Stadieneinteilung des Keratokonus ermöglicht und der auf dem linearen Term des CBI basiert. Dieser Corvis Biomechanische Faktor (CBiF) ist zugleich Grundlage der Einführung des biomechanischen E-Stagings, was die ABCD-Klassifikation um den Eckpfeiler der kornealen Biomechanik erweitert. Der Artikel zeigt Stärken und Limitationen der ABCDE-Klassifikation auf. Der (vermeintlich) „einseitige Keratokonus“ erweist sich zumeist als Momentaufnahme einer stark asymmetrisch ausgeprägten Keratektasie. Der reguläre Astigmatismus ist mitunter eine wichtige Differenzialdiagnose zur Keratektasie und schwierig von dieser abzugrenzen. Zudem wird die Anwendung des biomechanischen E-Stagings zur Progressionsbeurteilung des Keratokonus und nach Behandlung mittels kornealem Crosslinking oder Implantation intrakornealer Ringsegmente demonstriert und diskutiert.
Schlüsselwörter
Keratokonus - ABCDE-Klassifikation - E-Staging - Biomechanik - Corvis Biomechanischer Faktor CBiFPublication History
Received: 30 November 2022
Accepted: 14 April 2023
Article published online:
22 June 2023
© 2023. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References/Literatur
- 1
Eppig T,
Spira-Eppig C,
Goebels S.
et al.
Asymmetry between Left and Right Eyes in Keratoconus Patients Increases with the Severity
of the Worse Eye. Curr Eye Res 2018; 43: 848-855
Reference Ris Wihthout Link
- 2
Hashemi H,
Heydarian S,
Hooshmand E.
et al.
The Prevalence and Risk Factors for Keratoconus: A Systematic Review and Meta-Analysis.
Cornea 2020; 39: 263-270
Reference Ris Wihthout Link
- 3
de Sanctis U,
Loiacono C,
Richiardi L.
et al.
Sensitivity and Specificity of Posterior Corneal Elevation Measured by Pentacam in
Discriminating Keratoconus/Subclinical Keratoconus. Ophthalmology 2008; 115: 1534-1539
Reference Ris Wihthout Link
- 4
Randleman JB,
Dupps WJ,
Santhiago MR.
et al.
Screening for Keratoconus and Related Ectatic Corneal Disorders. Cornea 2015; 34:
e20-e22
Reference Ris Wihthout Link
- 5
Muftuoglu O,
Ayar O,
Ozulken K.
et al.
Posterior corneal elevation and back difference corneal elevation in diagnosing forme
fruste keratoconus in the fellow eyes of unilateral keratoconus patients. J Cataract
Refract Surg 2013; 39: 1348-1357
Reference Ris Wihthout Link
- 6
Golan O,
Hwang ES,
Lang P.
et al.
Differences in Posterior Corneal Features Between Normal Corneas and Subclinical Keratoconus.
J Refract Surg 2018; 34: 664-670
Reference Ris Wihthout Link
- 7
Smadja D,
Santhiago MR,
Mello GR.
et al.
Influence of the reference surface shape for discriminating between normal corneas,
subclinical keratoconus, and keratoconus. J Refract Surg 2013; 29: 274-281
Reference Ris Wihthout Link
- 8
Ambrósio R,
Randleman JB.
Screening for Ectasia Risk: What Are We Screening For and How Should We Screen For
It?. J Refract Surg 2013; 29: 230-232
Reference Ris Wihthout Link
- 9
Elkitkat RS,
Gharieb HM,
Othman IS.
Accuracy of the posterior corneal elevation values of Pentacam HR from different reference
surfaces in early ectasia diagnosis. Int Ophthalmol 2021; 41: 629-638
Reference Ris Wihthout Link
- 10
Flockerzi E,
Xanthopoulou K,
Goebels SC.
et al.
Keratoconus staging by decades: a baseline ABCD classification of 1000 patients in
the Homburg Keratoconus Center. Br J Ophthalmol 2021; 105: 1069-1075
Reference Ris Wihthout Link
- 11
Belin MW,
Duncan JK.
Keratoconus: The ABCD Grading System. Klin Monbl Augenheilkd 2016; 233: 701-707
Reference Ris Wihthout Link
- 12
Belin MW,
Meyer JJ,
Duncan JK.
et al.
Assessing Progression of Keratoconus and Cross-linking Efficacy: The Belin ABCD Progression
Display. Int J Kerat Ect Cor Dis 2017; 6: 1-10
Reference Ris Wihthout Link
- 13
Flockerzi E,
Elzer B,
Daas L.
et al.
The Reliability of Successive Scheimpflug Imaging and Anterior Segment Optical Coherence
Tomography Measurements Decreases With Increasing Keratoconus Severity. Cornea 2021;
40: 1433-1439
Reference Ris Wihthout Link
- 14
Herber R,
Lenk J,
Pillunat LE.
et al.
Comparison of corneal tomography using a novel swept-source optical coherence tomographer
and rotating Scheimpflug system in normal and keratoconus eyes: repeatability and
agreement analysis. Eye Vis (Lond) 2022; 9: 19
Reference Ris Wihthout Link
- 15
Gustafsson I,
Faxén T,
Vicente A.
et al.
An inter-day assessment of the ABC parameters in the evaluation of progressive keratoconus.
Sci Rep 2021; 11: 16037
Reference Ris Wihthout Link
- 16
Elham R,
Jafarzadehpur E,
Hashemi H.
et al.
Keratoconus diagnosis using Corvis ST measured biomechanical parameters. J Curr Ophthalmol
2017; 29: 175-181
Reference Ris Wihthout Link
- 17
Tian L,
Ko MWL,
Wang L.
et al.
Assessment of ocular biomechanics using dynamic ultra high-speed Scheimpflug imaging
in keratoconic and normal eyes. J Refract Surg 2014; 30: 785-791
Reference Ris Wihthout Link
- 18
Peña-García P,
Peris-Martínez C,
Abbouda A.
et al.
Detection of subclinical keratoconus through non-contact tonometry and the use of
discriminant biomechanical functions. J Biomech 2016; 49: 353-363
Reference Ris Wihthout Link
- 19
Ambrósio R,
Correia FF,
Lopes B.
et al.
Corneal Biomechanics in Ectatic Diseases: Refractive Surgery Implications. Open Ophthalmol
J 2017; 11: 176-193
Reference Ris Wihthout Link
- 20
Vinciguerra R,
Ambrósio R,
Elsheikh A.
et al.
Detection of Keratoconus With a New Biomechanical Index. J Refract Surg 2016; 32:
803-810
Reference Ris Wihthout Link
- 21
Reisdorf S.
[Artificial Intelligence for the Development of Screening Parameters in the Field
of Corneal Biomechanics]. Klin Monbl Augenheilkd 2019; 236: 1423-1427
Reference Ris Wihthout Link
- 22
Langenbucher A,
Häfner L,
Eppig T.
et al.
Keratoconus detection and classification from parameters of the Corvis® ST: A study based on algorithms of machine learning. Ophthalmologe 2021; 118: 697-706
Reference Ris Wihthout Link
- 23
Ambrósio R,
Lopes BT,
Faria-Correia F.
et al.
Integration of Scheimpflug-Based Corneal Tomography and Biomechanical Assessments
for Enhancing Ectasia Detection. J Refract Surg 2017; 33: 434-443
Reference Ris Wihthout Link
- 24
Shen Y,
Han T,
Jhanji V.
et al.
Correlation Between Corneal Topographic, Densitometry, and Biomechanical Parameters
in Keratoconus Eyes. Trans Vis Sci Tech 2019; 8: 12
Reference Ris Wihthout Link
- 25
Koh S,
Inoue R,
Ambrósio R.
et al.
Correlation Between Corneal Biomechanical Indices and the Severity of Keratoconus.
Cornea 2020; 39: 215-221
Reference Ris Wihthout Link
- 26
Herber R,
Pillunat LE,
Raiskup F.
Development of a classification system based on corneal biomechanical properties using
artificial intelligence predicting keratoconus severity. Eye Vis (Lond) 2021; 8: 21
Reference Ris Wihthout Link
- 27
Shetty R,
Nuijts RM,
Srivatsa P.
et al.
Understanding the Correlation between Tomographic and Biomechanical Severity of Keratoconic
Corneas. Biomed Res Int 2015; 2015: 294197
Reference Ris Wihthout Link
- 28
Flockerzi E,
Vinciguerra R,
Belin MW.
et al.
Correlation of the Corvis Biomechanical Factor CBiF with tomographic parameters in
keratoconus. J Cataract Refract Surg 2022; 48: 215-221
Reference Ris Wihthout Link
- 29
Flockerzi E,
Vinciguerra R,
Belin MW.
et al.
Combined biomechanical and tomographic keratoconus staging: Adding a biomechanical
parameter to the ABCD keratoconus staging system. Acta Ophthalmol 2022; 100: e1135-e1142
Reference Ris Wihthout Link
- 30
Flockerzi E,
Häfner L,
Xanthopoulou K.
et al.
Reliability analysis of successive Corneal Visualization Scheimpflug Technology measurements
in different keratoconus stages. Acta Ophthalmol 2022; 100: e83-e90
Reference Ris Wihthout Link
- 31
Eliasy A,
Chen KJ,
Vinciguerra R.
et al.
Determination of Corneal Biomechanical Behavior in-vivo for Healthy Eyes Using CorVis
ST Tonometry: Stress-Strain Index. Front Bioeng Biotechnol 2019; 7: 105
Reference Ris Wihthout Link
- 32
Gomes JAP,
Tan D,
Rapuano CJ.
et al.
Global consensus on keratoconus and ectatic diseases. Cornea 2015; 34: 359-369
Reference Ris Wihthout Link
- 33
Amsler M.
The “forme fruste” of keratoconus. Wien Klin Wochenschr 1961; 73: 842-843
Reference Ris Wihthout Link
- 34
Salomão MQ,
Höffling-Lima AL,
Esporcatte LPG,
Faria Correia F,
Lopes BT,
Sena N,
Machado AP,
Ambrósio R.
Redefining Forme Fruste Keratoconus. In:
Almodin E,
Nassaralla BA,
Sandes J.
eds.
Keratoconus. Cham: Springer International Publishing; 2022: 853-867
Reference Ris Wihthout Link
- 35
Vinciguerra R,
Ambrósio R,
Roberts CJ.
et al.
Biomechanical Characterization of Subclinical Keratoconus Without Topographic or Tomographic
Abnormalities. J Refract Surg 2017; 33: 399-407
Reference Ris Wihthout Link
- 36
Herber R,
Hasanli A,
Lenk J.
et al.
Evaluation of Corneal Biomechanical Indices in Distinguishing Between Normal, Very
Asymmetric, and Bilateral Keratoconic Eyes. J Refract Surg 2022; 38: 364-372
Reference Ris Wihthout Link
- 37
Flockerzi E,
Xanthopoulou K,
Daas L.
et al.
Evaluation of Dynamic Corneal Response Parameters and the Biomechanical E-Staging
After Accelerated Corneal Cross-Linking in Keratoconus. Asia Pac J Ophthalmol (Phila)
2022; 11: 514-520
Reference Ris Wihthout Link
- 38
Xanthopoulou K,
Milioti G,
Daas L.
et al.
Accelerated corneal crosslinking causes pseudoprogression in keratoconus within the
first 6 weeks without affecting posterior corneal curvature. Eur J Ophthalmol 2022;
32: 2565-2576
Reference Ris Wihthout Link
- 39
Caporossi A,
Mazzotta C,
Baiocchi S.
et al.
Long-term Results of Riboflavin Ultraviolet A Corneal Collagen Cross-linking for Keratoconus
in Italy: The Siena Eye Cross Study. Am J Ophthalmol 2010; 149: 585-593
Reference Ris Wihthout Link
- 40
Greenstein SA,
Shah VP,
Fry KL.
et al.
Corneal thickness changes after corneal collagen crosslinking for keratoconus and
corneal ectasia: one-year results. J Cataract Refract Surg 2011; 37: 691-700
Reference Ris Wihthout Link
- 41
Herber R,
Francis M,
Spoerl E.
et al.
Evaluation of Biomechanical Changes After Accelerated Cross-Linking in Progressive
Keratoconus: A Prospective Follow-Up Study. Cornea 2023;
Reference Ris Wihthout Link
- 42
Herber R,
Vinciguerra R,
Tredici C.
et al.
Repeatability of corneal deformation response parameters by dynamic ultra-high speed
Scheimpflug imaging before and after corneal cross-linking. J Cataract Refract Surg
2023;
Reference Ris Wihthout Link
- 43
Zare M,
Mehrjardi H,
Afarideh M.
et al.
Visual, keratometric and corneal biomechanical changes after Intacs SK implantation
for moderate to severe keratoconus. J Ophthalmic Vis Res 2016; 11: 17
Reference Ris Wihthout Link
- 44
Matar C,
Daas L,
Suffo S.
et al.
Reliability of corneal tomography after implantation of intracorneal ring segments
for keratoconus. Ophthalmologe 2020; 117: 1092-1099
Reference Ris Wihthout Link
- 45
Kang MJ,
Byun YS,
Yoo YS.
et al.
Long-term outcome of intrastromal corneal ring segments in keratoconus: Five-year
follow up. Sci Rep 2019; 9: 315
Reference Ris Wihthout Link