Synlett 2023; 34(17): 1943-1947
DOI: 10.1055/a-2080-5069
synpacts

New Advances in Sultine Chemistry

Zhiming Zhu
a   CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health. College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei 430079, P. R. of China
,
Zhengxi Deng
a   CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health. College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei 430079, P. R. of China
,
Xinke Ouyang
a   CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health. College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei 430079, P. R. of China
,
Chao Shu
a   CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health. College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei 430079, P. R. of China
b   HICI Digital Power Technology Co., Ltd., No. 6, Fozuling 3rd Road, East Lake Hi-tech Development Zone, 430074, Wuhan, Hubei, P. R. of China
› Author Affiliations
We are grateful for financial support from the National Natural Science Foundation of China, the Fundamental Research Funds for the Central Universities, and the Central China Normal University (CCNU).


Abstract

Sultines (lactones of sulfinic acids), as a fascinating class of sulfur heterocycles, has been found tremendous applications in the field of chemistry, pharmaceutical, and materials sciences due to the unique chemical, biological, and pharmaceutical activities. However, the chemistry of sultines long remains less developed because of their challenging to access with traditional routes. The recent years have witnessed an increasing interest in sultines preparation and new methods were reported with modern methodologies and technologies. The main objective of this Synpacts article is to summarize the latest major developments for the synthesis of sultine frameworks/ring systems, mainly covering radical relay, anion relay cyclization and radical anion relay cyclization. We wish to bring readers a comprehensive understanding about the state of play of sultines formation and make contribution for future research.

1 Introduction

2 Radical Relay Cyclization

3 Anion Relay Cyclization

4 Radical Anion Relay Cyclization

5 Conclusion



Publication History

Received: 03 April 2023

Accepted after revision: 25 April 2023

Accepted Manuscript online:
25 April 2023

Article published online:
02 June 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Baumann E, Walter G. Chem. Ber. 1893; 26: 1124
    • 1b Krauthausen E. In Methoden der Organischen Chemie, Vol. E 11. Klamann D. Thieme; Stuttgart: 1985: 640
    • 1c Krauthausen E. In Methoden der Organischen Chemie, Vol. E 11. Klamann D. Thieme; Stuttgart: 1985: 655

      For selected reviews, see:
    • 2a Dittmer DC, Hoey MD. Cyclic Sulfinic Acid Derivatives (Sultines and Sulfinamides). In The Chemistry of Sulphinic Acids, Esters, and their Derivatives. Patai S. Wiley; Chichester: 1990: 239
    • 2b Bondarenko OB, Saginova LG, Zyk NV. Russ. Chem. Rev. 1996; 65: 147
    • 2c Kotha S, Khedkar P. Chem. Rev. 2012; 112: 1650

      For selected examples, see:
    • 3a Jung F, Molin M, Van Den Elzen R, Durst T. J. Am. Chem. Soc. 1974; 96: 935
    • 3b Oppolzer W. Synthesis 1978; 793
    • 3c Squires TG, Venier CG, Hodgson BA, Chang LW, Davis FA, Panunto TW. J. Org. Chem. 1981; 46: 2373
    • 3d Charlton JL, Alauddin MM. Tetrahedron 1987; 43: 287
    • 3e Roberts DW, Williams DL. Tetrahedron 1987; 43: 1027
    • 3f Liu W.-D, Chi C.-C, Pai I.-F, Wu A.-T, Chung W.-S. J. Org. Chem. 2002; 67: 9267
    • 4a Kawecki R. Tetrahedron: Asymmetry 2003; 14: 2827
    • 4b Vogel P, Turks M, Bouchez L, Craita C, Huang XG, Murcia MC, Fonquerne F, Didier C, Flowers C. Pure Appl. Chem. 2008; 80: 791
    • 5a King JF, de Mayo P, Mclntosh CL, Piers K, Smith DJ. H. Can. J. Chem. 1970; 48: 3704
    • 5b Dodson RM, Hammen PD, Davis RA. J. Org. Chem. 1973; 36: 2693
    • 5c Bondareko OB, Saginova LG, Shabarov YuS. Zh. Org. Khim. 1987; 23: 1114
    • 5d Vogel P, Turks M, Bouchez L, Markovic D, Varela-Alvarez A, Sordo JA. Acc. Chem. Res. 2007; 40: 931
  • 6 Coulomb J, Certal V, Fensterbank L, Lacôte E, Malacria M. Angew. Chem. Int. Ed. 2006; 45: 633
  • 7 Coulomb SH. J, Certal V, Larraufie MH, Ollivier C, Corbet G, Mignani JP, Fensterbank L, Lacôte E, Malacria M. Chem. Eur. J. 2009; 15: 10225
  • 8 Garrido-Castro AF, Salaverri N, Maestro MC, Alemán J. Org. Lett. 2019; 21: 5295

    • For selected reviews, see:
    • 9a Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 9b Skubi KL, Blum TR, Yoon TP. Chem. Rev. 2016; 116: 10035
    • 9c Chen Y, Lu L.-Q, Yu D.-G, Zhu C.-J, Xiao W-J. Sci. China: Chem. 2019; 62: 24
    • 9d Xiao Y, Chen J.-R, Xiao W.-J. Chem. Rev. 2021; 121: 506
  • 10 Smith GM. T, Burton PM, Bray CD. Angew. Chem. Int. Ed. 2015; 54: 15236

    • For selected reviews, see:
    • 11a Pitzer L, Schwarz JL, Glorius F. Chem. Sci. 2019; 10: 8285
    • 11b Wiles RJ. Isr. J. Chem. 2020; 60: 281
    • 11c Donabauer K, König B. Acc. Chem. Res. 2021; 54: 242
    • 11d Sharma S, Singh J, Sharma A. Adv. Synth. Catal. 2021; 363: 3146
  • 12 Li H, Zhang Y, Yang X, Deng Z, Zhu Z, Zhou P, Ouyang X, Yuan Y, Chen X, Yang L, Liu M, Shu C. Angew. Chem. Int. Ed. 2023; 62: e202300159