Klin Monbl Augenheilkd 2023; 240(06): 779-782
DOI: 10.1055/a-2085-5738
Übersicht/Review

Brillouin Spectroscopy in Ophthalmology

Article in several languages: deutsch | English
Theo G. Seiler
1   Klinik für Augenheilkunde, Universitätsklinikum Düsseldorf, Deutschland
2   IROC, Institut für Refraktive und Ophthalmo-Chirurgie, Zürich, Schweiz
3   Universitätsklinik für Augenheilkunde, Inselspital Universitatsspital Bern, Schweiz
,
Gerd Geerling
1   Klinik für Augenheilkunde, Universitätsklinikum Düsseldorf, Deutschland
› Author Affiliations

Abstract

Background Information about corneal biomechanics is crucial for achieving satisfactory outcomes after surgical corneal interventions, e.g., for astigmatic keratotomies, but also to identify corneas that are at risk for postoperative complications such as corneal ectasia. Hitherto, approaches to characterize corneal biomechanics in an in vivo setting have yielded only minor success, demonstrating the unmet medical need for a diagnostic technique to measure ocular biomechanics.

Objective This review shall explain the mechanism of Brillouin spectroscopy and summarize the current scientific knowledge for ocular tissue.

Methods PubMed research of relevant experimental and clinical publications, as well as reporting of own experience using Brillouin spectroscopy.

Results Brillouin spectroscopy can measure different biomechanical moduli with a high spatial resolution. Currently, available devices are able to detect focal corneal weakening, e.g., in keratoconus, as well as stiffening after corneal cross-linking. Also, the mechanical properties of the crystalline can be measured. Corneal anisotropy and hydration, together with the dependence on the angle of the incident laser beam in Brillouin spectroscopy, are challenges in the precise interpretation of measured data. A clear advantage in the detection of subclinical keratoconus compared to corneal tomography, however, has not been shown yet.

Conclusion Brillouin spectroscopy is a technique to characterize biomechanical properties of ocular tissue in vivo. Published results confirm ex vivo data of ocular biomechanics; however, further improvements in the acquisition and interpretation of measured data are required until this technique can be used in a clinically viable setting.



Publication History

Received: 08 March 2023

Accepted: 03 May 2023

Accepted Manuscript online:
04 May 2023

Article published online:
22 June 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Lans LI. Experimentelle Untersuchungen über Entstehung von Astigmatismus durch nicht-perforierende Corneawunden. Arch Augenheilkunde 1898; 45: 117
  • 2 Sato T, Akiyama K, Shibata H. A new surgical approach to myopia. Am J Ophthalmol 1953; 36: 823-829
  • 3 Waring 3rd GO, Lynn MJ, McDonnell PJ. Results of the prospective evaluation of radial keratotomy (PERK) study 10 years after surgery. Arch Ophthalmol 1994; 112: 1298-1308
  • 4 Wendelstein JA, Hoffmann PC, Mariacher S. et al. Precision and refractive predictability of a new nomogram for femtosecond laser-assisted corneal arcuate incisions. Acta Ophthalmol 2021; 99: e1297-e1306
  • 5 Fadlallah A, Mehanna C, Saragoussi JJ. et al. Safety and efficacy of femtosecond laser-assisted arcuate keratotomy to treat irregular astigmatism after penetrating keratoplasty. J Cataract Refract Surg 2015; 41: 1168-1175
  • 6 Elsheikh A, Anderson K. Comparative study of corneal strip extensiometry and inflation tests. J R Soc Interface 2005; 2: 177-185
  • 7 Abahussin M, Hayes S, Knox Cartwright NE. et al. 3D collagen orientation study of the human cornea using X-ray diffraction and femtosecond laser technology. Invest Ophthalmol Vis Sci 2009; 50: 5159-5164
  • 8 Abass A, Hayes S, White N. et al. Transverse depth-dependent changes in corneal collagen lamellar orientation and distribution. J R Soc Interface 2015; 12: 20140717
  • 9 Elsheikh A, Alhasso D, Rama P. Biomechanical properties of human and porcine corneas. Exp Eye Res 2008; 86: 783-790
  • 10 Mikula ER, Jester JV, Juhasz T. Measurement of an Elasticity Map in the Human Cornea. Invest Ophthalmol Vis Sci 2016; 57: 3282-3286
  • 11 Eltony AM, Shao P, Yun SH. Measuring mechanical anisotropy of the cornea with Brillouin microscopy. Nat Commun 2022; 13: 1354
  • 12 Seiler TG, Shao P, Frueh BE. et al. The influence of hydration on different mechanical moduli of the cornea. Graefes Arch Clin Exp Ophthalmol 2018; 256: 1653-1660
  • 13 Ford MR, Dupps jr WJ, Rollins AM. et al. Method for optical coherence elastography of the cornea. J Biomed Opt 2011; 16: 016005
  • 14 Vaughan JM, Randall JT. Brillouin scattering, density and elastic properties of the lens and cornea of the eye. Nature 1980; 284: 489-491
  • 15 Blackburn BJ, Gu S, Ford MR. et al. Noninvasive Assessment of Corneal Crosslinking With Phase-Decorrelation Optical Coherence Tomography. Invest Ophthalmol Vis Sci 2019; 60: 41-51
  • 16 Herber R, Terai N, Pillunat KR. et al. Dynamischer Scheimpflug-Analyzer (Corvis ST) zur Bestimmung kornealer biomechanischer Parameter: Ein praxisbezogener Überblick. Ophthalmologe 2018; 115: 635-643
  • 17 Scarcelli G, Kim P, Yun SH. In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy. Biophys J 2011; 101: 1539-1545
  • 18 Scarcelli G, Pineda R, Yun SH. Brillouin optical microscopy for corneal biomechanics. Invest Ophthalmol Vis Sci 2012; 53: 185-190
  • 19 Scarcelli G, Yun SH. In vivo Brillouin optical microscopy of the human eye. Opt Express 2012; 20: 9197-9202
  • 20 Scarcelli G, Besner S, Pineda R. et al. Biomechanical characterization of keratoconus corneas ex vivo with Brillouin microscopy. Invest Ophthalmol Vis Sci 2014; 55: 4490-4495
  • 21 Reiß S, Burau G, Stachs O. et al. Spatially resolved Brillouin spectroscopy to determine the rheological properties of the eye lens. Biomed Opt Express 2011; 2: 2144-2159
  • 22 Heisterkamp A, Wenzel J, Iriarte C. et al. Techniques for In Vivo Assessment of Corneal Biomechanics: Brillouin Spectroscopy and Hydration State – Quo Vadis?. Klin Monbl Augenheilkd 2022; 239: 1427-1432
  • 23 Seiler TG, Shao P, Eltony A. et al. Brillouin Spectroscopy of Normal and Keratoconus Corneas. Am J Ophthalmol 2019; 202: 118-125
  • 24 Lepert G, Gouveia RM, Connon CJ. et al. Assessing corneal biomechanics with Brillouin spectro-microscopy. Faraday Discuss 2016; 187: 415-428
  • 25 Lopes BT, Elsheikh A. In Vivo Corneal Stiffness Mapping by the Stress-Strain Index Maps and Brillouin Microscopy. Curr Eye Res 2022; 30: 1-7
  • 26 Webb JN, Zhang H, Sinha Roy A. et al. Detecting Mechanical Anisotropy of the Cornea Using Brillouin Microscopy. Transl Vis Sci Technol 2020; 9: 26
  • 27 Shao P, Seiler TG, Eltony AM. et al. Effects of Corneal Hydration on Brillouin Microscopy In Vivo. Invest Ophthalmol Vis Sci 2018; 59: 3020-3027
  • 28 Reiss S, Sperlich K, Hovakimyan M. et al. Ex vivo measurement of postmortem tissue changes in the crystalline lens by Brillouin spectroscopy and confocal reflectance microscopy. IEEE Trans Biomed Eng 2012; 59: 2348-2354
  • 29 Besner S, Scarcelli G, Pineda R. et al. In Vivo Brillouin Analysis of the Aging Crystalline Lens. Invest Ophthalmol Vis Sci 2016; 57: 5093-5100