Subscribe to RSS
DOI: 10.1055/a-2105-0756
Einflussnahme des Diabetes mellitus auf glaukomrelevante Untersuchungsergebnisse beim primären Offenwinkelglaukom
Article in several languages: English | deutschAuthors

Zusammenfassung
Das primäre Offenwinkelglaukom (POWG) wird nicht mehr als eine isolierte augendruckabhängige Optikusneuropathie, sondern als eine neurodegenerative Erkrankung angesehen, bei der der oxidative Stress und die Neuroinflammation im Vordergrund stehen. Diese Prozesse können durch zusätzlich vorliegende Systemerkrankungen verstärkt werden. Am häufigsten kommen eine arterielle Hypertonie, Dyslipidämien und ein Diabetes mellitus vor. Anhand des Diabetes mellitus soll gezeigt werden, wie weitreichend eine derartige Systemerkrankung sowohl auf die funktionellen als auch auf die strukturellen diagnostischen Methoden für das POWG einen Einfluss nehmen kann. Diese Kenntnisse sind essenziell, da durch diese Interferenzen Fehlinterpretationen zum POWG denkbar sind, die auch Therapieentscheidungen betreffen können.
Schlüsselwörter
Glaukom - Diabetes - funktionelle Diagnostik - strukturelle Diagnostik - Perimetrie - optische KohärenztomografiePublication History
Received: 18 December 2022
Accepted: 25 May 2023
Article published online:
29 August 2023
© 2023. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References/Literatur
- 1
Jassim AH,
Inman DM,
Mitchell CH.
Crosstalk Between Dysfunctional Mitochondria and Inflammation in Glaucomatous Neurodegeneration.
Front Pharmacol 2021; 12: 699623
Reference Ris Wihthout Link
- 2
Duarte JN.
Neuroinflammatory Mechanisms of Mitochondrial Dysfunction and Neurodegeneration in
Glaucoma. J Ophthalmol 2021; 2021: 4581909
Reference Ris Wihthout Link
- 3
Sabel BA,
Lehnigk L.
Is Mental Stress the Primary Cause of Glaucoma?. Klin Monbl Augenheilkd 2021; 238:
132-145
Reference Ris Wihthout Link
- 4
Chan JW,
Chan NCY,
Sadun AA.
Glaucoma as Neurodegeneration in the Brain. Eye Brain 2021; 13: 21-28
Reference Ris Wihthout Link
- 5
Li W,
Pan J,
Wei M.
et al.
Nonocular Influencing Factors for Primary Glaucoma: An Umbrella Review of Meta-Analysis.
Ophthalmic Res 2021; 64: 938-950
Reference Ris Wihthout Link
- 6
Schuster AK,
Erb C,
Hoffmann EM.
et al.
The Diagnosis and Treatment of Glaucoma. Dtsch Arztebl Int 2020; 117: 225-234
Reference Ris Wihthout Link
- 7
Zhao YX,
Chen XW.
Diabetes and risk of glaucoma: systematic review and a Meta-analysis of prospective
cohort studies. Int J Ophthalmol 2017; 10: 1430-1435
Reference Ris Wihthout Link
- 8
Xue Z,
Yuan J,
Chen F.
et al.
Genome-wide association meta-analysis of 88,250 individuals highlights pleiotropic
mechanisms of five ocular diseases in UK Biobank. EBioMedicine 2022; 82: 104161
Reference Ris Wihthout Link
- 9
Erb C,
Gast U,
Schremmer D.
German register for glaucoma patients with dry eye. I. Basic outcome with respect
to dry eye. Graefes Arch Clin Exp Ophthalmol 2008; 246: 1593-1601
Reference Ris Wihthout Link
- 10
Lin HC,
Chien CW,
Hu CC.
et al.
Comparison of comorbid conditions between open-angle glaucoma patients and a control
cohort: a case-control study. Ophthalmology 2010; 117: 2088-2095
Reference Ris Wihthout Link
- 11
Hacke C,
Erb C,
Weisser B.
Risikofaktoren und Zielwerte in der kardiovaskulären Primär- und Sekundärprävention:
Bedeutung für das Glaukom. Klin Monbl Augenheilkd 2018; 235: 151-156
Reference Ris Wihthout Link
- 12
Wisse RP,
Peeters N,
Imhof SM.
et al.
Comparison of Diaton transpalpebral tonometer with applanation tonometry in keratoconus.
Int J Ophthalmol 2016; 9: 395-398
Reference Ris Wihthout Link
- 13
Choritz L,
Mansouri K,
van den Bosch J.
et al.
Telemetric Measurement of Intraocular Pressure via an Implantable Pressure Sensor-12-Month
Results from the ARGOS-02 Trial. Am J Ophthalmol 2020; 209: 187-196
Reference Ris Wihthout Link
- 14
Gordon MO,
Kass MA.
What We Have Learned From the Ocular Hypertension Treatment Study. Am J Ophthalmol
2018; 189: xxiv-xxvii
Reference Ris Wihthout Link
- 15
Kohlhaas M,
Spörl E,
Böhm AG.
et al.
Applanationstonometrie bei Normalpatienten und Patienten nach LASIK. Klin Monbl Augenheilkd
2005; 222: 823-826
Reference Ris Wihthout Link
- 16
Harper CL,
Boulton ME,
Bennett D.
et al.
Diurnal variations in human corneal thickness. Br J Ophthalmol 1996; 80: 1068-1072
Reference Ris Wihthout Link
- 17
Zimmermann N,
Brandt S,
Brünner J.
et al.
Klinische Untersuchung zur Veränderung der kornealen Biomechanik bei Patienten mit
systemischer Sklerodermie. Klin Monbl Augenheilkd 2019; 236: 806-815
Reference Ris Wihthout Link
- 18
Demirci S,
Gunes A,
Koyuncuoglu HR.
et al.
Evaluation of corneal parameters in patients with Parkinsonʼs disease. Neurol Sci
2016; 37: 1247-1252
Reference Ris Wihthout Link
- 19
Ang GS,
Nicholas S,
Wells AP.
Poor utility of intraocular pressure correction formulae in individual glaucoma and
glaucoma suspect patients. Clin Exp Ophthalmol 2011; 39: 111-118
Reference Ris Wihthout Link
- 20
Park SJ,
Ang GS,
Nicholas S.
et al.
The effect of thin, thick, and normal corneas on Goldmann intraocular pressure measurements
and correction formulae in individual eyes. Ophthalmology 2012; 119: 443-449
Reference Ris Wihthout Link
- 21
Hoffmann EM,
Prokosch-Willing V.
Primary Open Angle Glaucoma. Klin Monbl Augenheilkd 2017; 234: 1407-1422
Reference Ris Wihthout Link
- 22
Gaspar R,
Pinto LA,
Sousa DC.
Corneal properties and glaucoma: a review of the literature and meta-analysis. Arq
Bras Oftalmol 2017; 80: 202-206
Reference Ris Wihthout Link
- 23
Viswanathan D,
Goldberg I,
Graham SL.
Relationship of change in central corneal thickness to visual field progression in
eyes with glaucoma. Graefes Arch Clin Exp Ophthalmol 2013; 251: 1593-1599
Reference Ris Wihthout Link
- 24
Susanna BN,
Ogata NG,
Jammal AA.
et al.
Corneal Biomechanics and Visual Field Progression in Eyes with Seemingly Well-Controlled
Intraocular Pressure. Ophthalmology 2019; 126: 1640-1646
Reference Ris Wihthout Link
- 25
Kumar N,
Pop-Busui R,
Musch DC.
et al.
Central Corneal Thickness Increase Due to Stromal Thickening With Diabetic Peripheral
Neuropathy Severity. Cornea 2018; 37: 1138-1142
Reference Ris Wihthout Link
- 26
Ljubimov AV.
Diabetic complications in the cornea. Vision Res 2017; 139: 138-152
Reference Ris Wihthout Link
- 27
Del Buey MA,
Casas P,
Caramello C.
et al.
An Update on Corneal Biomechanics and Architecture in Diabetes. J Ophthalmol 2019;
2019: 7645352
Reference Ris Wihthout Link
- 28
Coudrillier B,
Pijanka J,
Jefferys J.
et al.
Effects of age and diabetes on scleral stiffness. J Biomech Eng 2015; 137: 0710071-07100710
Reference Ris Wihthout Link
- 29
Sayah DN,
Mazzaferri J,
Descovich D.
et al.
The Association Between Ocular Rigidity and Neuroretinal Damage in Glaucoma. Invest
Ophthalmol Vis Sci 2020; 61: 1-9
Reference Ris Wihthout Link
- 30
Tang L,
Xu GT,
Zhang JF.
Inflammation in diabetic retinopathy: possible roles in pathogenesis and potential
implications for therapy. Neural Regen Res 2023; 18: 976-982
Reference Ris Wihthout Link
- 31
Carrella S,
Massa F,
Indrieri A.
The Role of MicroRNAs in Mitochondria-Mediated Eye Diseases. Front Cell Dev Biol 2021;
9: 653522
Reference Ris Wihthout Link
- 32
Carpi-Santos R,
de Melo Reis RA,
Gomes FCA.
et al.
Contribution of Müller Cells in the Diabetic Retinopathy Development: Focus on Oxidative
Stress and Inflammation. Antioxidants (Basel) 2022; 11: 617
Reference Ris Wihthout Link
- 33
Altmann C,
Schmidt MHH.
The Role of Microglia in Diabetic Retinopathy: Inflammation, Microvasculature Defects
and Neurodegeneration. Int J Mol Sci 2018; 19: 110
Reference Ris Wihthout Link
- 34
Zhao X,
Sun R,
Luo X.
et al.
The Interaction Between Microglia and Macroglia in Glaucoma. Front Neurosci 2021;
15: 610788
Reference Ris Wihthout Link
- 35
Wang Y,
Fung NSK,
Lam WC.
et al.
mTOR Signalling Pathway: A Potential Therapeutic Target for Ocular Neurodegenerative
Diseases. Antioxidants (Basel) 2022; 11: 1304
Reference Ris Wihthout Link
- 36
Yao A,
van Wijngaarden P.
Metabolic pathways in context: mTOR signalling in the retina and optic nerve – A review.
Clin Exp Ophthalmol 2020; 48: 1072-1084
Reference Ris Wihthout Link
- 37
Hamilton NB,
Attwell D,
Hall CN.
Pericyte-mediated regulation of capillary diameter: a component of neurovascular coupling
in health and disease. Front Neuroenergetics 2010; 2: 5
Reference Ris Wihthout Link
- 38
Kovacs-Oller T,
Ivanova E,
Bianchimano P.
et al.
The pericyte connectome: spatial precision of neurovascular coupling is driven by
selective connectivity maps of pericytes and endothelial cells and is disrupted in
diabetes. Cell Discov 2020; 6: 39
Reference Ris Wihthout Link
- 39
Ji L,
Tian H,
Webster KA.
et al.
Neurovascular regulation in diabetic retinopathy and emerging therapies. Cell Mol
Life Sci 2021; 78: 5977-5985
Reference Ris Wihthout Link
- 40
Fragiotta S,
Pinazo-Durán MD,
Scuderi G.
Understanding Neurodegeneration from a Clinical and Therapeutic Perspective in Early
Diabetic Retinopathy. Nutrients 2022; 14: 792
Reference Ris Wihthout Link
- 41
Terai N,
Raiskup F,
Haustein M.
et al.
Identification of biomechanical properties of the cornea: the ocular response analyzer.
Curr Eye Res 2012; 37: 553-562
Reference Ris Wihthout Link
- 42
Zimprich L,
Diedrich J,
Bleeker A.
et al.
Corneal Hysteresis as a Biomarker of Glaucoma: Current Insights. Clin Ophthalmol 2020;
14: 2255-2264
Reference Ris Wihthout Link
- 43
Murtagh P,
OʼBrien C.
Corneal Hysteresis, Intraocular Pressure, and Progression of Glaucoma: Time for a
“Hyst-Oric” Change in Clinical Practice?. J Clin Med 2022; 11: 2895
Reference Ris Wihthout Link
- 44
Wells AP,
Garway-Heath DF,
Poostchi A.
et al.
Corneal hysteresis but not corneal thickness correlates with optic nerve surface compliance
in glaucoma patients. Invest Ophthalmol Vis Sci 2008; 49: 3262-3268
Reference Ris Wihthout Link
- 45
Wang X,
Xu G,
Wang W.
et al.
Changes in corneal biomechanics in patients with diabetes mellitus: a systematic review
and meta-analysis. Acta Diabetol 2020; 57: 973-981
Reference Ris Wihthout Link
- 46
Pillunat KR,
Herber R,
Pillunat LE.
Corneal Biomechanics in Glaucoma. Klin Monbl Augenheilkd 2022; 239: 158-164
Reference Ris Wihthout Link
- 47
Pillunat KR,
Herber R,
Spoerl E.
et al.
A new biomechanical glaucoma factor to discriminate normal eyes from normal pressure
glaucoma eyes. Acta Ophthalmol 2019; 97: E962-E967
Reference Ris Wihthout Link
- 48
Jung Y,
Chun H,
Moon JI.
Corneal deflection amplitude and visual field progression in primary open-angle glaucoma.
PLoS One 2019; 14: e0220655
Reference Ris Wihthout Link
- 49
Ohn K,
Noh YH,
Moon JI.
et al.
Measurement of corneal biomechanical properties in diabetes mellitus using the Corvis
ST. Medicine (Baltimore) 2022; 101: e30248
Reference Ris Wihthout Link
- 50
Yaqoob Z,
Wu J,
Yang C.
Spectral domain optical coherence tomography: a better OCT imaging strategy. Biotechniques
2005; 39(6 Suppl): S6-S13
Reference Ris Wihthout Link
- 51
Yuksel Elgin C,
Chen D,
Al-Aswad LA.
Ophthalmic imaging for the diagnosis and monitoring of glaucoma: A review. Clin Exp
Ophthalmol 2022; 50: 183-197
Reference Ris Wihthout Link
- 52
Tang Z,
Chan MY,
Leung WY.
et al.
Assessment of retinal neurodegeneration with spectral-domain optical coherence tomography:
a systematic review and meta-analysis. Eye (Lond) 2021; 35: 1317-1325
Reference Ris Wihthout Link
- 53
Chen X,
Nie C,
Gong Y.
et al.
Peripapillary retinal nerve fiber layer changes in preclinical diabetic retinopathy:
a meta-analysis. PLoS One 2015; 10: e0125919
Reference Ris Wihthout Link
- 54
Chai Q,
Yao Y,
Guo C.
et al.
Structural and functional retinal changes in patients with type 2 diabetes without
diabetic retinopathy. Ann Med 2022; 54: 1816-1825
Reference Ris Wihthout Link
- 55
Miguel A,
Silva A,
Barbosa-Breda J.
et al.
OCT-angiography detects longitudinal microvascular changes in glaucoma: a systematic
review. Br J Ophthalmol 2022; 106: 667-675
Reference Ris Wihthout Link
- 56
Fan X,
Ying Y,
Zhai R.
et al.
The characteristics of fundus microvascular alterations in the course of glaucoma:
a narrative review. Ann Transl Med 2022; 10: 527
Reference Ris Wihthout Link
- 57
Aghsaei Fard M,
Ritch R.
Optical coherence tomography angiography in glaucoma. Ann Transl Med 2020; 8: 1204
Reference Ris Wihthout Link
- 58
Yang JY,
Wang Q,
Yan YN.
et al.
Microvascular retinal changes in pre-clinical diabetic retinopathy as detected by
optical coherence tomographic angiography. Graefes Arch Clin Exp Ophthalmol 2020;
258: 513-520
Reference Ris Wihthout Link
- 59
Han Y,
Wang X,
Sun G.
et al.
Quantitative Evaluation of Retinal Microvascular Abnormalities in Patients With Type
2 Diabetes Mellitus Without Clinical Sign of Diabetic Retinopathy. Transl Vis Sci
Technol 2022; 11: 20
Reference Ris Wihthout Link
- 60
Ciprés M,
Satue M,
Melchor I.
et al.
Retinal neurodegeneration in patients with type 2 diabetes mellitus without diabetic
retinopathy. Arch Soc Esp Oftalmol (Engl Ed) 2022; 97: 205-218
Reference Ris Wihthout Link
- 61
Johannesen SK,
Viken JN,
Vergmann AS.
et al.
Optical coherence tomography angiography and microvascular changes in diabetic retinopathy:
a systematic review. Acta Ophthalmol 2019; 97: 7-14
Reference Ris Wihthout Link
- 62
Kuerten D,
Kotliar K,
Fuest M.
et al.
Does hemispheric vascular regulation differ significantly in glaucoma patients with
altitudinal visual field asymmetry? A single-center, prospective study. Int Ophthalmol
2021; 41: 3109-3119
Reference Ris Wihthout Link
- 63
Waldmann NP,
Kochkorov A,
Polunina A.
et al.
The prognostic value of retinal vessel analysis in primary open-angle glaucoma. Acta
Ophthalmol 2016; 94: e474-e480
Reference Ris Wihthout Link
- 64
Garhöfer G,
Zawinka C,
Resch H.
et al.
Response of retinal vessel diameters to flicker stimulation in patients with early
open angle glaucoma. J Glaucoma 2004; 13: 340-344
Reference Ris Wihthout Link
- 65
Gugleta K,
Waldmann N,
Polunina A.
et al.
Retinal neurovascular coupling in patients with glaucoma and ocular hypertension and
its association with the level of glaucomatous damage. Graefes Arch Clin Exp Ophthalmol
2013; 251: 1577-1585
Reference Ris Wihthout Link
- 66
Selbach MJ,
Schallenberg M,
Kramer S.
et al.
Trabeculectomy Improves Vessel Response Measured by Dynamic Vessel Analysis (DVA)
in Glaucoma Patients. Open Ophthalmol J 2014; 8: 75-81
Reference Ris Wihthout Link
- 67
Lim M,
Sasongko MB,
Ikram MK.
et al.
Systemic associations of dynamic retinal vessel analysis: a review of current literature.
Microcirculation 2013; 20: 257-268
Reference Ris Wihthout Link
- 68
Garhöfer G,
Chua J,
Tan B.
et al.
Retinal Neurovascular Coupling in Diabetes. J Clin Med 2020; 9: 2829
Reference Ris Wihthout Link
- 69
Garhöfer G,
Zawinka C,
Resch H.
et al.
Reduced response of retinal vessel diameters to flicker stimulation in patients with
diabetes. Br J Ophthalmol 2004; 88: 887-891
Reference Ris Wihthout Link
- 70
Mandecka A,
Dawczynski J,
Blum M.
et al.
Influence of flickering light on the retinal vessels in diabetic patients. Diabetes
Care 2007; 30: 3048-3052
Reference Ris Wihthout Link
- 71
Lott ME,
Slocomb JE,
Shivkumar V.
et al.
Impaired retinal vasodilator responses in prediabetes and type 2 diabetes. Acta Ophthalmol
2013; 91: e462-e469
Reference Ris Wihthout Link
- 72
Gegenfurtner KR,
Walter S,
Braun DI.
Visuelle Informationsverarbeitung im Gehirn. In:
Huber HD,
Lockermann B,
Scheibel M.
Hrsg.
Bild | Medien | Wissen. Visuelle Kompetenz im Medienzeitalter. München: Kopaed; 2002
Reference Ris Wihthout Link
- 73
Muriach M,
Flores-Bellver M,
Romero FJ.
et al.
Diabetes and the brain: oxidative stress, inflammation, and autophagy. Oxid Med Cell
Longev 2014; 2014: 102158
Reference Ris Wihthout Link
- 74
Lämmer R,
Huchzermeyer C.
Perimetrie in der Glaukomdiagnostik. Klin Monbl Augenheilkd 2021;
Reference Ris Wihthout Link
- 75
Medeiros FA,
Lisboa R,
Weinreb RN.
et al.
Retinal ganglion cell count estimates associated with early development of visual
field defects in glaucoma. Ophthalmology 2013; 120: 736-744
Reference Ris Wihthout Link
- 76
Pahor D.
Automated static perimetry as a screening method for evaluation of retinal perfusion
in diabetic retinopathy. Int Ophthalmol 1997; 21: 305-309
Reference Ris Wihthout Link
- 77
Bengtsson B,
Heijl A,
Agardh E.
Visual fields correlate better than visual acuity to severity of diabetic retinopathy.
Diabetologia 2005; 48: 2494-2500
Reference Ris Wihthout Link
- 78
Shimura M,
Yasuda K,
Nakazawa T.
et al.
Visual dysfunction after panretinal photocoagulation in patients with severe diabetic
retinopathy and good vision. Am J Ophthalmol 2005; 140: 8-15
Reference Ris Wihthout Link
- 79
Çeliker H,
Erdağı Bulut A,
Şahin Ö.
Comparison of Efficacy and Side Effects of Multispot Lasers and Conventional Lasers
for Diabetic Retinopathy Treatment. Turk J Ophthalmol 2017; 47: 34-41
Reference Ris Wihthout Link
- 80
Erb C,
Göbel K.
Funktionelle Glaukomdiagnostik. Ophthalmologe 2009; 106: 375-385
Reference Ris Wihthout Link
- 81
Lamparter J,
Schulze A,
Hoffmann EM.
Frequenzverdopplungsperimetrie: Neue Methode zur Untersuchung glaukomatöser Gesichtsfeldausfälle.
Ophthalmologe 2009; 106: 709-713
Reference Ris Wihthout Link
- 82
Bayer AU,
Erb C.
Short wavelength automated perimetry, frequency doubling technology perimetry, and
pattern electroretinography for prediction of progressive glaucomatous standard visual
field defects. Ophthalmology 2002; 109: 1009-1017
Reference Ris Wihthout Link
- 83
Lee MJ,
Kim DM,
Jeoung JW.
et al.
Localized retinal nerve fiber layer defects and visual field abnormalities by Humphrey
matrix frequency doubling technology perimetry. Am J Ophthalmol 2007; 143: 1056-1058
Reference Ris Wihthout Link
- 84
Fan X,
Wu LL,
Xiao GG.
et al.
The 8-year follow-up study for clinical diagnostic potentials of frequency-doubling
technology perimetry for perimetrically normal eyes of open-angle glaucoma patients
with unilateral visual field loss. Zhonghua Yan Ke Za Zhi 2018; 54: 177-183
Reference Ris Wihthout Link
- 85
Hu R,
Wang C,
Racette L.
Comparison of matrix frequency-doubling technology perimetry and standard automated
perimetry in monitoring the development of visual field defects for glaucoma suspect
eyes. PLoS One 2017; 12: e0178079
Reference Ris Wihthout Link
- 86
Kim SA,
Park CK,
Park HL.
Comparison between frequency-doubling technology perimetry and standard automated
perimetry in early glaucoma. Sci Rep 2022; 12: 10173
Reference Ris Wihthout Link
- 87
Terauchi R,
Wada T,
Ogawa S.
et al.
FDT Perimetry for Glaucoma Detection in Comprehensive Health Checkup Service. J Ophthalmol
2020; 2020: 4687398
Reference Ris Wihthout Link
- 88
Meira-Freitas D,
Tatham AJ,
Lisboa R.
et al.
Predicting progression of glaucoma from rates of frequency doubling technology perimetry
change. Ophthalmology 2014; 121: 498-507
Reference Ris Wihthout Link
- 89
Liu S,
Yu M,
Weinreb RN.
et al.
Frequency doubling technology perimetry for detection of visual field progression
in glaucoma: a pointwise linear regression analysis. Invest Ophthalmol Vis Sci 2014;
55: 2862-2869
Reference Ris Wihthout Link
- 90
Iwase A,
Tsutsumi T,
Fujii M.
et al.
Risk factors for glaucoma are reflected in abnormal responses to frequency-doubling
technology screening in both normal and glaucoma eyes. Sci Rep 2022; 12: 11705
Reference Ris Wihthout Link
- 91
Kanadani FN,
Mello PA,
Dorairaj SK.
et al.
Frequency-doubling technology perimetry and multifocal visual evoked potential in
glaucoma, suspected glaucoma, and control patients. Clin Ophthalmol 2014; 8: 1323-1330
Reference Ris Wihthout Link
- 92
Aykan U,
Akdemir MO,
Yildirim O.
et al.
Screening for Patients with Mild Alzheimer Disease Using Frequency Doubling Technology
Perimetry. Neuroophthalmology 2013; 37: 239-246
Reference Ris Wihthout Link
- 93
Valenti DA.
Alzheimerʼs disease: screening biomarkers using frequency doubling technology visual
field. ISRN Neurol 2013; 2013: 989583
Reference Ris Wihthout Link
- 94
Merle H,
Olindo S,
Donnio A.
et al.
Anatomic and functional correlation of frequency-doubling technology perimetry (FDTP)
in multiple sclerosis. Int Ophthalmol 2011; 31: 263-270
Reference Ris Wihthout Link
- 95
Realini T,
Lai MQ,
Barber L.
Impact of diabetes on glaucoma screening using frequency-doubling perimetry. Ophthalmology
2004; 111: 2133-2136
Reference Ris Wihthout Link
- 96
Montesano G,
Ometto G,
Higgins BE.
et al.
Evidence for Structural and Functional Damage of the Inner Retina in Diabetes With
No Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2021; 62: 35
Reference Ris Wihthout Link
- 97
Bao YK,
Yan Y,
Gordon M.
et al.
Visual Field Loss in Patients With Diabetes in the Absence of Clinically-Detectable
Vascular Retinopathy in a Nationally Representative Survey. Invest Ophthalmol Vis
Sci 2019; 60: 4711-4716
Reference Ris Wihthout Link
- 98
Joltikov KA,
de Castro VM,
Davila JR.
et al.
Multidimensional functional and structural evaluation reveals neuroretinal impairment
in early diabetic retinopathy. Invest Ophthalmol Vis Sci 2017; 58: BIO277-BIO290
Reference Ris Wihthout Link
- 99
Hofmann L,
Palczewski K.
Advances in understanding the molecular basis of the first steps in color vision.
Prog Retin Eye Res 2015; 49: 46-66
Reference Ris Wihthout Link
- 100
Conway BR.
Color vision, cones, and color-coding in the cortex. Neuroscientist 2009; 15: 274-290
Reference Ris Wihthout Link
- 101
Pacheco-Cutillas M,
Edgar DF,
Sahraie A.
Acquired colour vision defects in glaucoma-their detection and clinical significance.
Br J Ophthalmol 1999; 83: 1396-1402
Reference Ris Wihthout Link
- 102
Bayer L,
Funk J,
Töteberg-Harms M.
Incidence of dyschromatopsy in glaucoma. Int Ophthalmol 2020; 40: 597-605
Reference Ris Wihthout Link
- 103
Drance SM,
Lakowski R,
Schulzer M.
et al.
Acquired color vision changes in glaucoma. Use of 100-hue test and Pickford anomaloscope
as predictors of glaucomatous field change. Arch Ophthalmol 1981; 99: 829-831
Reference Ris Wihthout Link
- 104
Papaconstantinou D,
Georgalas I,
Kalantzis G.
et al.
Acquired color vision and visual field defects in patients with ocular hypertension
and early glaucoma. Clin Ophthalmol 2009; 3: 251-257
Reference Ris Wihthout Link
- 105
Chen XD,
Gardner TW.
A critical review: Psychophysical assessments of diabetic retinopathy. Surv Ophthalmol
2021; 66: 213-230
Reference Ris Wihthout Link
- 106
Safi H,
Safi S,
Hafezi-Moghadam A.
et al.
Early detection of diabetic retinopathy. Surv Ophthalmol 2018; 63: 601-608
Reference Ris Wihthout Link
- 107
Richman J,
Spaeth GL,
Wirostko B.
Contrast sensitivity basics and a critique of currently available tests. J Cataract
Refract Surg 2013; 39: 1100-1106
Reference Ris Wihthout Link
- 108
Ichhpujani P,
Thakur S,
Spaeth GL.
Contrast Sensitivity and Glaucoma. J Glaucoma 2020; 29: 71-75
Reference Ris Wihthout Link
- 109
Wen Y,
Chen Z,
Zuo C.
et al.
Low-Contrast High-Pass Visual Acuity Might Help to Detect Glaucoma Damage: A Structure-Function
Analysis. Front Med (Lausanne) 2021; 8: 680823
Reference Ris Wihthout Link
- 110
Silva-Viguera MC,
García-Romera MC,
López-Izquierdo I.
et al.
Contrast Sensitivity Assessment in Early Diagnosis of Diabetic Retinopathy: A Systematic
Review. Semin Ophthalmol 2023; 38: 319-332
Reference Ris Wihthout Link
- 111
Chande PK,
Raman R,
John P.
et al.
Contrast-Sensitivity Function and Photo Stress-Recovery Time in Prediabetes. Clin
Optom (Auckl) 2020; 12: 151-155
Reference Ris Wihthout Link
- 112
Bode SF,
Jehle T,
Bach M.
Pattern electroretinogram in glaucoma suspects: new findings from a longitudinal study.
Invest Ophthalmol Vis Sci 2011; 52: 4300-4306
Reference Ris Wihthout Link
- 113
Bayer AU,
Maag KP,
Erb C.
Detection of optic neuropathy in glaucomatous eyes with normal standard visual fields
using a test battery of short-wavelength automated perimetry and pattern electroretinography.
Ophthalmology 2002; 109: 1350-1361
Reference Ris Wihthout Link
- 114
Cvenkel B,
Sustar M,
Perovšek D.
Ganglion cell loss in early glaucoma, as assessed by photopic negative response, pattern
electroretinogram, and spectral-domain optical coherence tomography. Doc Ophthalmol
2017; 135: 17-28
Reference Ris Wihthout Link
- 115
Mohammed MA,
Lolah MM,
Doheim MF.
et al.
Functional assessment of early retinal changes in diabetic patients without clinical
retinopathy using multifocal electroretinogram. BMC Ophthalmol 2020; 20: 411
Reference Ris Wihthout Link
- 116
McAnany JJ,
Persidina OS,
Park JC.
Clinical electroretinography in diabetic retinopathy: a review. Surv Ophthalmol 2022;
67: 712-722
Reference Ris Wihthout Link
- 117
Touyz RM,
Rios FJ,
Alves-Lopes R.
et al.
Oxidative Stress: A Unifying Paradigm in Hypertension. Can J Cardiol 2020; 36: 659-670
Reference Ris Wihthout Link
- 118
Arnaud C,
Bochaton T,
Pépin JL.
et al.
Obstructive sleep apnoea and cardiovascular consequences: Pathophysiological mechanisms.
Arch Cardiovasc Dis 2020; 113: 350-358
Reference Ris Wihthout Link
- 119
Miller YI,
Shyy JY.
Context-Dependent Role of Oxidized Lipids and Lipoproteins in Inflammation. Trends
Endocrinol Metab 2017; 28: 143-152
Reference Ris Wihthout Link
- 120
Sun Y,
Rawish E,
Nording HM.
et al.
Inflammation in Metabolic and Cardiovascular Disorders-Role of Oxidative Stress. Life
(Basel) 2021; 11: 672
Reference Ris Wihthout Link
- 121
Burgos-Morón E,
Abad-Jiménez Z,
Marañón AM.
et al.
Relationship Between Oxidative Stress, ER Stress, and Inflammation in Type 2 Diabetes:
The Battle Continues. J Clin Med 2019; 8: 1385
Reference Ris Wihthout Link
- 122
World Health Organization (WHO).
Medication without Harm. 2017. Accessed June 27, 2023 at: https://www.who.int/initiatives/medication-without-harm
Reference Ris Wihthout Link
- 123
Moßhammer D,
Haumann H,
Mörike K.
et al.
Polypharmacy–an upward trend with unpredictable effects. Dtsch Arztebl Int 2016; 113:
627-633
Reference Ris Wihthout Link