CC BY 4.0 · SynOpen 2023; 07(03): 381-393
DOI: 10.1055/a-2126-0346
paper

Synthesis of the Key Saccharide Fragments of the Glucuronic Acid-Containing Repeat Unit of Pentosan Polysulfate, a Heparin Sulfate Mimetic

a   Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, P. R. of China
,
Sarah Marshall
b   Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
,
Jas S. Ward
b   Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
,
Brett D. Schwartz
b   Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
› Author Affiliations
We thank Jinan University, the Australian National University and Beta Therapeutics Pty Ltd for financial support.


Abstract

Suitably protected mono- and di-saccharide residues associated with the glucuronic acid-containing repeat unit related to pentosan polysulfate have been prepared. The stereo-controlled coupling, using trichloroacetimidate chemistry, of certain of these is also described and the structure of a disaccharide so-formed has been confirmed by single-crystal X-ray analysis.

Supporting Information



Publication History

Received: 08 May 2023

Accepted after revision: 07 July 2023

Accepted Manuscript online:
10 July 2023

Article published online:
21 August 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Whitelock JM, Iozzo RV. Chem. Rev. 2005; 105: 2745
    • 1b Davis DA. S, Parish CR. Front. Immunol. 2013; 4: 470
    • 1c Perez S, Makshakova O, Angulo J, Bedini E, Bisio A, de Paz JL, Fadda E, Guerrini M, Hricovini M, Lisacek F, Nieto PM, Pagel K, Paiardi G, Richter R, Samsonov SA, Vivés RR, Nikitovic D, Blum SR. JACS Au 2023; 3: 628
  • 2 Heparanase . In Advances in Experimental Medicine and Biology, Vol. 1221. Vlodavsky I, Sanderson R, Ilan N. Springer; Cham: 2020. https://doi.org/10.1007/978-3-030-34521-1_3
    • 3a Meirovitz A, Goldberg R, Binder A, Rubinstein AM, Hermano E, Elkin M. FEBS J. 2013; 280: 2307
    • 3b Rivara S, Milazzo FM, Giannini G. Future Med. Chem. 2016; 8: 647
    • 3c Lebsir N, Zoulim F, Grigorov B. Viruses 2023; 15: 237

      For useful reviews on such matters, see:
    • 4a Mende M, Bednarek C, Wawryszyn M, Sauter P, Biskup MB, Schepers U, Bräse S. Chem. Rev. 2016; 116: 8193
    • 4b Chhabra M, Doherty GG, See NW, Gandhi NS, Ferro V. Chem. Rec. 2021; 21: 3087
    • 4c Pongener I, O’Shea C, Wootton H, Watkinson M, Miller GJ. Chem. Rec. 2021; 21: 3238

      For some representative recent efforts in this area, see:
    • 5a Jeanneret RA, Dalton CE, Gardiner JM. J. Org. Chem. 2019; 84: 15063
    • 5b Loka RS, Sletten ET, Barash U, Vlodavsky I, Nguyen HM. ACS Appl. Mater. Interfaces 2019; 11: 244
    • 5c Spijkers-Shaw S, Campbell K, Shields NJ, Miller JH, Rendle PM, Jiao W, Young SL, Zubkova OV. Chem. Asian J. 2022; 17: e202200228
    • 5d Schleyer KA, Liu J, Chen Z, Wang Z, Zhang Y, Zuo J, Ybargollin AJ, Guo H, Cui L. Bioconjugate Chem. 2022; 33: 2290
    • 5e Loka RS, Song Z, Sletten ET, Kayal Y, Vlodavsky I, Zhang K, Nguyen HM. ACS Chem. Biol. 2022; 17: 1387
    • 5f de Boer C, Armstrong Z, Lit VA. J, Brash U, Ruijgrok G, Boyango I, Weitzenberg MM, Schröder SP, Sarris AJ. C, Meeuwenoord NJ, Bule P, Kayal Y, Iilan N, Codée JD. C, Vlodavsky I, Overkleeft HS, Davies GJ, Wu L. Proc. Natl. Acad. Sci. U.S.A. 2022; 119: e2203167119
    • 5g He P, Zhang X, Xia K, Green DE, Baytas S, Xu Y, Pham T, Liu J, Zhang F, Almond A, Linhardt RJ, DeAngelis PL. Nat. Commun. 2022; 13: 7438
    • 5h Borlandelli V, Armstrong Z, Nin-Hill A, Codée JD. C, Raich L, Artola M, Rovira C, Davies GJ, Overkleeft HS. ChemMedChem 2023; 18: e202200580
    • 5i Doherty GG, Ler GJ. M, Wimmer N, Bernhardt PV, Ashmus RA, Vocadlo DJ, Armstrong Z, Davies GJ, Maccarana M, Li J.-p, Kayal Y, Ferro V. ChemBioChem 2023; 24: e202200619
    • 5j Yang C, Deng Y, Wang Y, Xia C, Mehta AY, Baker KJ, Samal A, Booneimsri P, Lertmaneedang C, Hwang S, Flynn JP, Cao M, Liu C, Zhu AC, Cummings RD, Lin C, Mohanty U, Niu J. Chem. Sci. 2023; 14: 3514
    • 5k Imai Y, Wakasugi D, Suzuki R, Kato S, Sugisaki M, Mima M, Miyagawa H, Endo M, Fujimoto N, Fukunaga T, Kato S, Kuroda S, Takhashi T, Kakinuma H. Bioorg. Med. Chem. Lett. 2023; 79: 129050
    • 6a Swain S, Wellstein A, Parker B, Lippman M, Steakley C, DeLap R. Ann. N. Y. Acad. Sci. 1993; 698: 63
    • 6b Anderson VR, Perry CM. Drugs 2006; 66: 821
    • 6c Wijekoon HM. S, Bwalya EC, Fang J, Kim S, Hosoya K, Okumura M. BMC Vet. Res. 2018; 14: 152
    • 6d Alekseeva A, Raman R, Eisele G, Clark T, Fisher A, Lee SL., Jiang X, Torri G, Sasisekharan R, Bertini S. Carbohydr. Polym. 2020; 234: 115913
    • 6e Smith MM, Melrose J. Pharmaceuticals 2023; 16: 437
  • 7 https://www.janssenlabels.com/package-insert/product-monograph/prescribing-information/ELMIRON-pi.pdf (accessed 12/04/2023)
  • 8 Zugmaier G, Lippman ME, Wellstein A. J. Natl. Cancer Inst. 1992; 84: 1716
    • 9a Curreri L. Pentosan Polysulphate: A Medicine Made from Beech Bark, 1st ed. Curreri; Linda: 2007. ISBN 047311972
    • 9b Deshpande PB, Luthra P, Pandey AK, Paghdar DJ, Sharma P, Govardhana GV. US20100105889A1, 2010
  • 10 Recently we have shown that the exhaustive sulfation of compounds related to 1 results in the associated xylose residues preferentially adopting a 1C4 conformation: Vo Y., Schwartz B. D., Onagi H., Ward J. S., Gardiner M. G., Banwell M. G., Nelms K., Malins L. R.; Chem. Eur. J.; 2021, 27: 9830; However, for the sake of consistency with the prior literature concerned with such compounds, in this paper we show such residues in the 4C1 conformation.
    • 11a Freeman C, Liu L, Banwell MG, Brown KJ, Bezos A, Ferro V, Parish CR. J. Biol. Chem. 2005; 280: 8842
    • 11b Whitefield C, Vo Y, Schwartz BD, Hepburn C, Ahmed FH, Onagi H, Banwell MG, Nelms K, Malins LR, Jackson CJ. Biochemistry 2023; 62: 2202
  • 12 The realization of related objectives has recently been reported by Madsen et al., see: Underlin EN, d’Errico C, Böhm M, Madsen R. Eur. J. Org. Chem. 2020; 3050
  • 13 Schmidt RR, Zhu X. Glycosyl Trichloroacetimidates . In Glycoscience . Fraser-Reid BO, Tatsuta K, Thiem J. Springer; Berlin: 2008
  • 14 Jenkins DJ, Potter BV. L. J. Chem. Soc., Perkin Trans. 1 1998; 41
  • 15 Xiao X, Bai D. Synlett 2001; 535
  • 16 Kondo Y. Carbohydr. Res. 1982; 110: 339
  • 17 van Boeckel CA. A, Beetz T. Tetrahedron Lett. 1983; 24: 3775
  • 18 Sixta G, Herok W, Gruber C, Weber HK, Sixta H, Kosma P. Lenzinger Ber. 2009; 87: 68
  • 19 Ogawa T, Horisaki T. Carbohydr. Res. 1983; 123: C1
  • 20 Das R, Mukhopadhyay G. J. Carbohydr. Chem. 2015; 34: 247
  • 21 Pilcher AS, DeShong P. J. Org. Chem. 1993; 58: 5130
  • 22 Tosin M, Murphy PV. Org. Lett. 2002; 4: 3675
  • 23 Senthilkumar T, Asha SK. Macromolecules 2015; 48: 3449
  • 24 Nudelman A, Herzig J, Gottlieb HE, Keinan E, Sterling J. Carbohydr. Res. 1987; 162: 145
  • 25 Abad-Romero B, Mereiter K, Sixta H, Hofinger A, Kosma P. Carbohydr. Res. 2009; 344: 21
  • 26 Best WM, Macdonald JM, Skelton BW, Stick RV, Tilbrook DM. G, White AH. Can. J. Chem. 2002; 80: 857
  • 27 Pfrengle F, Dekaris V, Schefzig L, Zimmer R, Reissig H.-U. Synlett 2008; 2965
  • 28 Hutchinson CR, Shekhani MS, Prudent JR. US8361973B2, 2013
  • 29 Lan P, Banwell MG, Ward JS, Willis AC. Org. Lett. 2014; 16: 228
  • 30 Rapi Z, Szolnoki B, Bakó P, Niedermann P, Toldy A, Bodzay B, Keglevich G, Marosi G. Eur. Polym. J. 2015; 67: 375
  • 31 Garneau S, Qiao L, Chen L, Walker S, Vederas JC. Bioorg. Med. Chem. 2004; 12: 6473
  • 32 Rosenberg HJ, Riley AM, Marwood RD, Correa V, Taylor CW, Potter BV. L. Carbohydr. Res. 2001; 332: 53