Subscribe to RSS
DOI: 10.1055/a-2130-0546
Chromatische Pupillometrie – ein neuer Weg zur funktionellen Glaukomdiagnostik?
Article in several languages: English | deutschAuthors

Zusammenfassung
Die chromatische Pupillometrie erlaubt die Quantifizierung der photorezeptorvermittelten (extrinsischen) und der melanopsinvermittelten (intrinsischen) Antwort der intrinsisch-photosensitiven retinalen Ganglienzellen (ipRGCs). Diese kleine Subpopulation der Ganglienzellen wird beim Glaukom ebenfalls geschädigt, und somit ist die chromatische Pupillometrie für die Glaukomdiagnostik potenziell interessant. Die bisherigen Studien zeigen sowohl eine Verminderung der phasischen Antwort als auch der tonischen Antwort beim Glaukom. Die diagnostische Wertigkeit unterschied sich abhängig von der verwendeten Technik und dem Studiendesign. Der vorliegende Artikel soll vor allem die Grundlagen der chromatischen Pupillometrie und die potenziellen Anwendungen beim Glaukom darstellen.
Publication History
Received: 20 June 2023
Accepted: 04 July 2023
Article published online:
07 September 2023
© 2023. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References/Literatur
- 1
Casson RJ,
Chidlow G,
Wood JPM.
et al.
Definition of glaucoma: clinical and experimental concepts. Clin Experiment Ophthalmol
2012; 40: 341-349
Reference Ris Wihthout Link
- 2
Camp AS,
Weinreb RN.
Will Perimetry Be Performed to Monitor Glaucoma in 2025?. Ophthalmology 2017; 124
(12S): S71-S75
Reference Ris Wihthout Link
- 3
Hood DC,
Kardon RH.
A framework for comparing structural and functional measures of glaucomatous damage.
Prog Retin Eye Res 2007; 26: 688-710
Reference Ris Wihthout Link
- 4
Lämmer R,
Huchzermeyer C.
[Value of Perimetric Measurements for Glaucoma Detection]. Klin Monbl Augenheilkd
2021;
Reference Ris Wihthout Link
- 5
Fry LE,
Fahy E,
Chrysostomou V.
et al.
The coma in glaucoma: Retinal ganglion cell dysfunction and recovery. Prog Retin Eye
Res 2018; 65: 77-92
Reference Ris Wihthout Link
- 6
Bach M,
Brigell MG,
Hawlina M.
et al.
ISCEV standard for clinical pattern electroretinography (PERG): 2012 update. Doc Ophthalmol
2013; 126: 1-7
Reference Ris Wihthout Link
- 7
Frishman L,
Sustar M,
Kremers J.
et al.
ISCEV extended protocol for the photopic negative response (PhNR) of the full-field
electroretinogram. Doc Ophthalmol 2018; 136: 207-211
Reference Ris Wihthout Link
- 8
Dacey DM.
Parallel pathways for spectral coding in primate retina. Annu Rev Neurosci 2000; 23:
743-775
Reference Ris Wihthout Link
- 9
Kim US,
Mahroo OA,
Mollon JD.
et al.
Retinal Ganglion Cells – Diversity of Cell Types and Clinical Relevance. Front Neurol
2021; 12: 661938
Reference Ris Wihthout Link
- 10
Rodiek RW.
The First Steps in Seeing. Sunderland, Massachusetts: Sinauer Associates, Inc.; 1998
Reference Ris Wihthout Link
- 11
Lee BB,
Sun H,
Zucchini W.
The temporal properties of the response of macaque ganglion cells and central mechanisms
of flicker detection. J Vis 2007;
Reference Ris Wihthout Link
- 12
Sample PA.
Short-wavelength automated perimetry: itʼs role in the clinic and for understanding
ganglion cell function. Prog Retin Eye Res 2000; 19: 369-383
Reference Ris Wihthout Link
- 13
Anderson AJ,
Johnson CA.
Frequency-doubling technology perimetry. Ophthalmol Clin North Am 2003; 16: 213-225
Reference Ris Wihthout Link
- 14
Frisén L.
New, sensitive window on abnormal spatial vision: rarebit probing. Vision Res 2002;
42: 1931-1939
Reference Ris Wihthout Link
- 15
Frisén L.
High-pass resolution perimetry. A clinical review. Doc Ophthalmol 1993; 83: 1-25
Reference Ris Wihthout Link
- 16
Swanson WH,
Sun H,
Lee BB.
et al.
Responses of Primate Retinal Ganglion Cells to Perimetric Stimuli. Invest Ophthalmol
Vis Sci 2011; 52: 764-771
Reference Ris Wihthout Link
- 17
Quigley HA,
Dunkelberger GR,
Green WR.
Chronic human glaucoma causing selectively greater loss of large optic nerve fibers.
Ophthalmology 1988; 95: 357-363
Reference Ris Wihthout Link
- 18
Johnson CA.
Selective versus nonselective losses in glaucoma. J Glaucoma 1994; 3 (Suppl. 01) S32-S44
Reference Ris Wihthout Link
- 19
Dacey DM,
Liao HW,
Peterson BB.
et al.
Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance
and project to the LGN. Nature 2005; 433: 749-754
Reference Ris Wihthout Link
- 20
Rukmini AV,
Milea D,
Aung T.
et al.
Pupillary responses to short-wavelength light are preserved in aging. Sci Rep 2017;
7: 43832
Reference Ris Wihthout Link
- 21
Feigl B,
Mattes D,
Thomas R.
et al.
Intrinsically photosensitive (melanopsin) retinal ganglion cell function in glaucoma.
Invest Ophthalmol Vis Sci 2011; 52: 4362-4367
Reference Ris Wihthout Link
- 22
Obara EA,
Hannibal J,
Heegaard S.
et al.
Loss of Melanopsin-Expressing Retinal Ganglion Cells in Severely Staged Glaucoma Patients.
Invest Ophthalmol Vis Sci 2016; 57: 4661-4667
Reference Ris Wihthout Link
- 23
Li RS,
Chen BY,
Tay DK.
et al.
Melanopsin-Expressing Retinal Ganglion Cells Are More Injury-Resistant in a Chronic
Ocular Hypertension Model. Invest Ophthalmol Vis Sci 2006; 47: 2951-2958
Reference Ris Wihthout Link
- 24
Honda S,
Namekata K,
Kimura A.
et al.
Survival of Alpha and Intrinsically Photosensitive Retinal Ganglion Cells in NMDA-Induced
Neurotoxicity and a Mouse Model of Normal Tension Glaucoma. Invest Ophthalmol Vis
Sci 2019; 60: 3696-3707
Reference Ris Wihthout Link
- 25
Kelbsch C,
Strasser T,
Chen Y.
et al.
Standards in Pupillography. Front Neurol 2019; 10: 129
Reference Ris Wihthout Link
- 26
Suo L,
Zhang D,
Qin X.
et al.
Evaluating State-of-the-Art Computerized Pupillary Assessments for Glaucoma Detection:
A Systematic Review and Meta-Analysis. Front Neurol 2020; 11: 777
Reference Ris Wihthout Link
- 27
Najjar RP,
Rukmini AV,
Finkelstein MT.
et al.
Handheld chromatic pupillometry can accurately and rapidly reveal functional loss
in glaucoma. Br J Ophthalmol 2023; 107: 663-670
Reference Ris Wihthout Link
- 28
Huchzermeyer C,
Kremers J.
Selective Stimulation of the Different Photoreceptor Classes by Silent Substitution
in Psychophysical and Electroretinographic Measurements. Klin Monbl Augenheilkd 2022;
239: 1433-1439
Reference Ris Wihthout Link
- 29
Zele AJ,
Adhikari P,
Cao D.
et al.
Melanopsin and Cone Photoreceptor Inputs to the Afferent Pupil Light Response. Front
Neurol 2019; 10: 529
Reference Ris Wihthout Link
- 30
Yoshikawa T,
Obayashi K,
Miyata K.
et al.
Association Between Postillumination Pupil Response and Glaucoma Severity: A Cross-Sectional
Analysis of the LIGHT Study. Invest Ophthalmol Vis Sci 2022; 63: 24
Reference Ris Wihthout Link
- 31
Ramirez AI,
de Hoz R,
Salobrar-Garcia E.
et al.
The Role of Microglia in Retinal Neurodegeneration: Alzheimerʼs Disease, Parkinson,
and Glaucoma. Front Aging Neurosci 2017; 9: 214
Reference Ris Wihthout Link
- 32
Gracitelli CPB,
Duque-Chica GL,
Moura AL.
et al.
A positive association between intrinsically photosensitive retinal ganglion cells
and retinal nerve fiber layer thinning in glaucoma. Invest Ophthalmol Vis Sci 2014;
55: 7997-8005
Reference Ris Wihthout Link
- 33
Kelbsch C,
Maeda F,
Strasser T.
et al.
Pupillary responses driven by ipRGCs and classical photoreceptors are impaired in
glaucoma. Graefes Arch Clin Exp Ophthalmol 2016; 254: 1361-1370
Reference Ris Wihthout Link
- 34
Quan Y,
Duan H,
Zhan Z.
et al.
Evaluation of the Glaucomatous Macular Damage by Chromatic Pupillometry. Ophthalmol
Ther 2023; 12: 2133-2156
Reference Ris Wihthout Link
- 35
Rukmini AV,
Milea D,
Baskaran M.
et al.
Pupillary Responses to High-Irradiance Blue Light Correlate with Glaucoma Severity.
Ophthalmology 2015; 122: 1777-1785
Reference Ris Wihthout Link
- 36
Adhikari P,
Zele AJ,
Thomas R.
et al.
Quadrant Field Pupillometry Detects Melanopsin Dysfunction in Glaucoma Suspects and
Early Glaucoma. Sci Rep 2016; 6: 33373
Reference Ris Wihthout Link
- 37
Kelbsch C,
Stingl K,
Kempf M.
et al.
Objective Measurement of Local Rod and Cone Function Using Gaze-Controlled Chromatic
Pupil Campimetry in Healthy Subjects. Transl Vis Sci Technol 2019; 8: 19
Reference Ris Wihthout Link
- 38
Kelbsch C,
Stingl K,
Jung R.
et al.
How lesions at different locations along the visual pathway influence pupillary reactions
to chromatic stimuli. Graefes Arch Clin Exp Ophthalmol 2022; 260: 1675-1685
Reference Ris Wihthout Link
