CC BY 4.0 · Organic Materials 2023; 05(04): 191-201
DOI: 10.1055/a-2213-1732
Soluble Graphene Nanoarchitectures
Short Review

Progress of Polycyclic Boron-Doped Molecular Carbons

Liuzhong Yuan
a   State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. of China
,
a   State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. of China
,
a   State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. of China
› Author Affiliations


Abstract

Molecular carbons, namely molecular cutout of carbon materials, are of importance for understanding accurate structures of carbon allotropes and developing functional π-electron materials. Doping the boron atoms into π-conjugated skeletons of molecular carbons enables the construction of boron-doped molecular carbons (BMCs), further leading to new chemistry and attractive material systems, which are distinct from carbon-based and other heteroatom-doped molecular carbons. Herein, the bottom-up organic synthesis methodologies have been employed to synthesize BMCs that feature the boron atoms at the edge or in the center of π-skeletons. They have not only amazing topological structures and good stability but also intriguing photophysical and electronic properties. Moreover, they have sufficient Lewis acidity and can coordinate with Lewis bases to form Lewis acid–base complexes, which exhibit stimuli-responsive functions. Notably, some of these BMCs can be utilized in the fields of organic reactions, optical and electronic devices, as well as supramolecular chemistry and photothermal materials. In this short review, we aim to highlight the design and synthetic strategies of polycyclic BMCs, and their unique physical properties and practical applications.



Publication History

Received: 21 September 2023

Accepted after revision: 10 November 2023

Accepted Manuscript online:
17 November 2023

Article published online:
28 November 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/).

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Narita A, Wang X-Y, Feng X, Müllen K. Chem. Soc. Rev. 2015; 44: 6616
    • 1b Itami K, Maekawa T. Nano Lett. 2020; 20: 4718
    • 1c Ueberricke L, Mastalerz M. Chem. Rec. 2021; 21: 558
    • 1d Jiang W, Wang Z. J. Am. Chem. Soc. 2022; 144: 14976
    • 1e Shi T-H, Wang M-X. CCS Chem. 2020; 2: 916
    • 3a Kawasumi K, Zhang Q, Segawa Y, Scott LT, Itami K. Nat. Chem. 2013; 5: 739
    • 3b Feng J, Wu Y, Yu Q, Liu Y, Jiang W, Wang D, Wang Z. CCS Chem. 2020; 2: 271
    • 3c Shi H, Xiong B, Chen Y, Lin C, Gu J, Zhu Y, Wang J. Chin. Chem. Lett. 2023; 34: 107520
    • 3d Zank S, Fernez-Garcia JM, Stasyuk AJ, Voityuk AA, Krug M, Sola M, Guldi DM, Martín N. Angew. Chem. Int. Ed. 2022; 61: e202112834
    • 3e Márquez IR, Castro-Fernández S, Millán A, Campaña AG. Chem. Commun. 2018; 54: 6705
    • 3f Guo J, Li Z, Zhang J, Li B, Liang Y, Wang Y, Xie S, Phan H, Herng TS, Ding J, Wu J, Tang BZ, Zeng Z. CCS Chem. 2022; 4: 95
    • 3g Shen J-J, Han Y, Dong S, Phan H, Herng TS, Xu T, Ding J, Chi C. Angew. Chem. Int. Ed. 2021; 60: 4464
    • 3h Gregolińska H, Majewski M, Chmielewski PJ, Gregoliński J, Chien A, Zhou J, Wu Y-L, Bae YJ, Wasielewski MR, Zimmerman PM, Stępień M. J. Am. Chem. Soc. 2018; 140: 14474
    • 4a Kirschbaum T, Rominger F, Mastalerz M. Angew. Chem. Int. Ed. 2020; 59: 270
    • 4b Hitosugi S, Yamasaki T, Isobe H. J. Am. Chem. Soc. 2012; 134: 12442
    • 4c Konishi A, Hirao Y, Matsumoto K, Kurata H, Kishi R, Shigeta Y, Nakano M, Tokunaga K, Kamada K, Kubo T. J. Am. Chem. Soc. 2013; 135: 1430
    • 4d Van Raden JM, Louie S, Zakharov LN, Jasti R. J. Am. Chem. Soc. 2017; 139: 2936
    • 4e Sai Ho Pun SH, Chan CK, Liu Z, Miao Q. Org. Mater. 2020; 2: 248
    • 4f Wang J, Zhu Y, Zhuang G, Wu Y, Wang S, Huang P, Sheng G, Chen M, ang S, Greber T, Du P. Nat. Commun. 2022; 13: 1239
    • 4g Elbert SM, Baumgärtner K, Esteves JA, Weber L, Rominger F, Mastalerz M. Org. Mater. 2020; 2: 358
    • 4h Qin L, Huang Y-Y, Wu B, Pan J, Yang J, Zhang J, Han G, Yang S, Chen L, Yin Z, Shu Y, Jiang L, Yi Y, Peng Q, Zhou X, Li C, Zhang G, Zhang X-S, Wu K, Zhang D. Angew. Chem. Int. Ed. 2023; 62: e202304632
    • 4i Konishi A, Morinaga A, Yasuda M. Chem. Eur. J. 2018; 24: 8548
    • 4j Zhao X-J, Hou H, Fan X-T, Wang Y, Liu Y-M, Tang C, Liu S-H, Ding P-P, Cheng J, Lin D-H, Wang C, Yang Y, Tan Y-Z. Nat. Commun. 2019; 10: 3057
    • 5a Borissov A, Maurya YK, Moshniaha L, Wong W-S, Żyła-Karwowska M, Stępień M. Chem. Rev. 2022; 122: 565
    • 5b Wang X-Y, Yao X, Narita A, Mullen K. Acc. Chem. Res. 2019; 52: 2491
    • 5c Jiang W, Li Y, Wang Z. Acc. Chem. Res. 2014; 47: 3135
    • 5d Larrañaga O, Romero-Nieto C, de Cózar A. Chem. Eur. J. 2017; 23: 17487
    • 5e Grzybowski M, Sadowski B, Butenschön H, Gryko DT. Angew. Chem. Int. Ed. 2020; 59: 2998
    • 6a Liu K, Jiang Z, Lalancette RA, Tang X, Jäkle F. J. Am. Chem. Soc. 2022; 144: 18908
    • 6b Yang W, Li N, Miao J, Zhan L, Gong S, Huang Z, Yang C. CCS Chem. 2022; 4: 3463
    • 6c Kondo Y, Yoshiura K, Kitera S, Nishi H, Oda S, Gotoh H, Sasada Y, Yanai M, Hatakeyama T. Nat. Photonics 2019; 13: 678
    • 6d Xu Y, Li C, Li Z, Wang J, Xue J, Wang Q, Cai X, Wang Y. CCS Chem. 2021; 3: 2077
    • 6e Wang J-Y, Pei J. Chin. Chem. Lett. 2016; 27: 1139
    • 6f Tajima K, Matsuo K, Yamada H, Seki S, Fukui N, Shinokubo H. Angew. Chem. Int. Ed. 2021; 60,: 14060
    • 6g Zhang X, Rauch F, Niedens J, da Silva RB, Friedrich A, Nowak-Król A, Garden SJ, Marder TB. J. Am. Chem. Soc. 2022; 144: 22316
    • 7a Min Y, Dou C, Liu D, Dong H, Liu J. J. Am. Chem. Soc. 2019; 141: 17015
    • 7b Franceschini M, Crosta M, Ferreira RR, Poletto D, Demitri N, Zobel JP, González L, Bonifazi D. J. Am. Chem. Soc. 2022; 144: 21470
    • 7c Lin W-B, Li M, Fang L, Chen C-F. Chin. Chem. Lett. 2018; 29: 40
    • 7d Liu K, Lalancette RA, Jäkle F. J. Am. Chem. Soc. 2019; 141: 7453
    • 7e Qu Y-K, Zhou D-Y, Kong F-C, Zheng Q, Tang X, Zhu Y-H, Huang C-C, Feng Z-Q, Fan J, Adachi C, Liao L-S, Jiang Z-Q. Angew. Chem. Int. Ed. 2022; 61: e202201886
    • 7f Tokimaru Y, Ito S, Nozaki K. Angew. Chem. Int. Ed. 2018; 57: 9818
    • 7g Wang W, Hanindita F, Webster RD, Ito S. CCS Chem. 2023; 5: 1108
    • 7h Ma L, Wang S, Li Y, Shi Q, Xie W, Chen H, Wang X, Zhu W, Jiang L, Chen R, Peng Q, Huang H. CCS Chem. 2022; 4: 3669
    • 9a Regulska E, Hindenberg P, Romero-Nieto C. Eur. J. Inorg. Chem. 2019; 2019: 1519
    • 9b Duffy MP, Delaunay W, Bouit PA, Hissler M. Chem. Soc. Rev. 2016; 45: 5296
    • 9c He X, Lin J-B, Kan WH, Trudel S, Baumgartner T. Org. Lett. 2014; 16: 1366
    • 9d Heskia A, Maris T, Aguiar PM, Wuest JD. J. Am. Chem. Soc. 2019; 141: 18740
    • 10a Ji L, Griesbeck S, Marder TB. Chem. Sci. 2017; 8: 846
    • 10b von Grotthuss E, John A, Kaese T, Wagner M. Asian J. Org. Chem. 2018; 7: 37
    • 10c Jäkle F. Coord. Chem. Rev. 2006; 250: 1107
    • 10d Yamaguchi S, Wakamiya A. Pure Appl. Chem. 2006; 78: 1413
    • 10e Jäkle F. Chem. Rev. 2010; 110: 3985
    • 10f Wakamiya A, Yamaguchi S. Bull. Chem. Soc. Jpn. 2015; 88: 1357
    • 10g Escande A, Ingleson MJ. Chem. Commun. 2015; 51: 6257
    • 10h Mellerup SK, Wang S. Chem. Soc. Rev. 2019; 48: 3537
    • 11a Hirai M, Tanaka N, Sakai M, Yamaguchi S. Chem. Rev. 2019; 119: 8291
    • 11b Escande A, Ingleson MJ. Chem. Commun. 2015; 51: 6257
    • 11c Araneda JF, Neue B, Piers WE. Angew. Chem. Int. Ed. 2012; 51: 9977
    • 12a Reus C, Weidlich S, Bolte M, Lerner H-W, Wagner M. J. Am. Chem. Soc. 2013; 135: 12892
    • 12b Chen C, Wang M-W, Zhao X-Y, Yang S, Chen X-Y, Wang X-Y. Angew. Chem. Int. Ed. 2022; 61: e202200779
    • 12c Liao G, Chen X, Qiao Y, Liu K, Wang N, Chen P, Yin X. Org. Lett. 2021; 23: 5836
    • 12d Kitamoto Y, Suzuki T, Miyata Y, Kita H, Funaki K, Oi S. Chem. Commun. 2016; 52: 7098
    • 12e Hertz VM, Ando N, Hirai M, Bolte M, Lerner H-W, Yamaguchi S, Wagner M. Organometallics 2017; 36: 2512
    • 12f Kahan RJ, Hirunpinyopas W, Cid J, Ingleson MJ, Dryfe RAW. Chem. Mater. 2019; 31: 1891
    • 13a Saito S, Matsuo K, Yamaguchi S. J. Am. Chem. Soc. 2012; 134: 9130
    • 13b Schickedanz K, Trageser T, Bolte M, Lerner H-W, Wagner M. Chem. Commun. 2015; 51: 15808
    • 13c Fujimoto K, Oh J, Yorimitsu H, Kim D, Osuka A. Angew. Chem. Int. Ed. 2016; 55: 3196
    • 13d Kushida T, Shuto A, Yoshio M, Kato T, Yamaguchi S. Angew. Chem. Int. Ed. 2015; 54: 6922
    • 13e Ando N, Yamada T, Narita H, Oehlmann NN, Wagner M, Yamaguchi S. J. Am. Chem. Soc. 2021; 143: 9944
    • 13f Sun W, Yang Y, Tian X, Yuan L, Wang Y, Dou C. Chem. Eur. J. 2023; e202302459
    • 13g Adelizzi B, Chidchob P, Tanaka N, Lamers BAG, Meskers SCJ, Ogi S, Palmans ARA, Yamaguchi S, Meijer EW. J. Am. Chem. Soc. 2020; 142: 16681
    • 14a Zhou Z, Wakamiya A, Kushida T, Yamaguchi S. J. Am. Chem. Soc. 2012; 134: 4529
    • 14b Kushida T, Shirai S, Ando N, Okamoto T, Ishii H, Matsui H, Yamagishi M, Uemura T, Tsurumi J, Watanabe S, Takeya J, Yamaguchi S. J. Am. Chem. Soc. 2017; 139: 14336
    • 14c Dou C, Saito S, Matsuo K, Hisaki I, Yamaguchi S. Angew. Chem. Int. Ed. 2012; 51: 12206
    • 14d Osumi S, Saito S, Dou C, Matsuo K, Kume K, Yoshikawa H, Awaga K, Yamaguchi S. Chem. Sci. 2016; 7: 219
    • 15a Matsuo K, Saito S, Yamaguchi S. J. Am. Chem. Soc. 2014; 136: 12580
    • 15b Matsuo K, Saito S, Yamaguchi S. Angew. Chem. Int. Ed. 2016; 55: 11984
    • 15c Narita H, Choi H, Ito M, Ando N, Ogi S, Yamaguchi S. Chem. Sci. 2022; 13: 1484
    • 16a Hertz VM, Bolte M, Lerner H-W, Wagner M. Angew. Chem. Int. Ed. 2015; 54: 8800
    • 16b Hertz VM, Lerner H-W, Wagner M. Org. Lett. 2015; 17: 5240
    • 16c Hertz VM, Massoth JG, Bolte M, Lerner H-W, Wagner M. Chem. Eur. J. 2016; 22: 13181
    • 16d Schickedanz K, Radtke J, Bolte M, Lerner H-W, Wagner M. J. Am. Chem. Soc. 2017; 139: 2842
    • 16e Radtke J, Schickedanz K, Bamberg M, Menduti L, Schollmeyer D, Bolte M, Lerner H-W, Wagner M. Chem. Sci. 2019; 10: 9017
    • 17a Crossley DL, Kahan RJ, Endres S, Warner AJ, Smith RA, Cid J, Dunsford JJ, Jones JE, Vitorica-Yrezabal I, Ingleson MJ. Chem. Sci. 2017; 8: 7969
    • 17b Kahan RJ, Crossley DL, Cid J, Radcliffe JE, Woodward AW, Fasano V, Endres S, Whitehead GFS, Ingleson MJ. Chem. Commun. 2018; 54: 9490
    • 17c Kahan RJ, Crossley DL, Cid J, Radcliffe JE, Ingleson MJ. Angew. Chem. Int. Ed. 2018; 57: 8084
    • 17d Yuan K, Kahan RJ, Si C, Williams A, Kirschner S, Uzelac M, Zysman-Colman E, Ingleson MJ. Chem. Sci. 2020; 11: 3258
    • 18a Farrell JM, Schmidt D, Grande V, Würthner F. Angew. Chem. Int. Ed. 2017; 56: 11846
    • 18b Farrell JM, Mützel C, Bialas D, Rudolf M, Menekse K, Krause A-M, Stolte M, Würthner F. J. Am. Chem. Soc. 2019; 141: 9096
    • 18c Mützel C, Farrell JM, Shoyama K, Würthner F. Angew. Chem. Int. Ed. 2022; 61: e202115746
    • 18d Schnitzlein M, Mützel C, Shoyama K, Farrell JM, Würthner F. Eur. J. Org. Chem. 2022; e202101273
    • 18e Schnitzlein M, Zhu C, Shoyama K, Würthner F. Chem. Eur. J. 2022; 28: e202202053
  • 19 Miyamoto F, Nakatsuka S, Yamada K, Nakayama K-i, Hatakeyama T. Org. Lett. 2015; 17: 6158
  • 20 Zhang J-J, Tang M-C, Fu Y, Low K-H, Ma J, Yang L, Weigand JJ, Liu J, Yam VW-W, Feng X. Angew. Chem. Int. Ed. 2021; 60: 2833
    • 21a John A, Bolte M, Lerner H-W, Wagner M. Angew. Chem. Int. Ed. 2017; 56: 5588
    • 21b John A, Bolte M, Lerner H-W, Meng G, Wang S, Peng T, Wagner M. J. Mater. Chem. C 2018; 6: 10881
  • 22 Chen C, Wang M-W, Zhao X-Y, Yang S, Chen X-Y, Wang X-Y. Angew. Chem. Int. Ed. 2022; 61: e202200779
    • 23a Yuan L, Guo J, Yang Y, Ye K, Dou C, Wang Y. CCS Chem. 2023; 5: 876
    • 23b Yuan L, Liu Y, Sun W, Ye K, Dou C, Wang Y. Dalton Trans. 2022; 51: 11892
    • 24a Fan Z, Sun W, Yang Y, Guo J, Dou C, Wang Y. Chin. Chem. Lett. 2023; 34: 107729
    • 24b Sun W, Guo J, Fan Z, Yuan L, Ye K, Dou C, Wang Y. Angew. Chem. Int. Ed. 2022; 61: e202209271
    • 25a Kawai S, Saito S, Osumi S, Yamaguchi S, Foster AS, Spijker P, Meyer E. Nat. Commun. 2015; 6: 8098
    • 25b Cloke RR, Marangoni T, Nguyen GD, Joshi T, Rizzo DJ, Bronner C, Cao T, Louie SG, Crommie MF, Fischer FR. J. Am. Chem. Soc. 2015; 137: 8872
    • 26a Liu Y, Yuan L, Guo J, Sun W, Wang Y, Dou C. Angew. Chem. Int. Ed. 2023; e202306911
    • 26b Guo J, Zhang T, Li Z, Ye K, Wang Y, Dou C. Chem. Commun. 2023; 59: 2644
    • 27a Guo J, Yang Y, Dou C, Wang Y. J. Am. Chem. Soc. 2021; 143: 18272
    • 27b Tian X, Guo J, Sun W, Yuan L, Dou C, Wang Y. Chem. Eur. J. 2022; 28: e202200045
    • 27c Guo J, Li Z, Tian X, Zhang T, Wang Y, Dou C. Angew. Chem. Int. Ed. 2023; e202217470
    • 27d Li Z, Sun T, Guo J, Tian X, Liu Y, Sheng S, Ye K, Xie Z, Dou C. Org. Chem. Front. 2023; 10: 4289
  • 28 Yuan L, Yang J, Qi S, Liu Y, Tian X, Jia T, Wang Y, Dou C. Angew. Chem. Int. Ed. 2023; e202314982