CC BY 4.0 · Organic Materials 2024; 06(01): 1-11
DOI: 10.1055/a-2228-4757
Original Article

Polyampholyte Hydrogels with pH-Dependent Swelling for Controlled Catch and Release of Model Dyes

a   Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
,
a   Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
,
a   Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
,
a   Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
b   Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
c   Center for Energy and Environmental Chemistry Jena (CEEC), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany
d   Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Grüne Aue, 07754 Jena, Germany
› Author Affiliations


Abstract

Polyampholyte hydrogels with tunable charge are synthesized by a facile two-step approach including the free-radical crosslinking copolymerization of tert-butoxycarbonylaminomethylacrylate (tBAMA) with N,N′-methylenebisacrylamide and subsequent deprotection. Thermal, photo- and redox-initiating methods were utilized in the synthesis of crosslinked PtBAMA and the resulting polymer networks swell during deprotection in a mixture of trifluoro acetic acid/water. While the crosslinked PtBAMA forms organogels in various organic solvents such as chloroform, acetone and DMSO, polydehydroalanine (PDha) networks after deprotection form hydrogels with pH-dependent swelling and oscillatory swelling/deswelling depending on pH value and salinity. The tunable charge of the developed hydrogels was employed for a catch-and-release platform controlled by pH, in which methylene blue as a cationic model was adsorbed at pH 11 and desorbed at pH 2, whereas methyl blue as an anionic model dye was adsorbed at pH 2 and desorbed at pH 11.



Publication History

Received: 17 November 2023

Accepted after revision: 11 December 2023

Accepted Manuscript online:
13 December 2023

Article published online:
30 January 2024

© 2024. The Authors. This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/).

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 New address of Supun W. Mohotti: Chair of Biomaterials, University of Bayreuth, TAO Gebäude, Prof.-Rüdiger-Bormann-Str. 1, 95447 Bayreuth, Germany.
    • 2a Gu Y, Zhao J, Johnson JA. Angew. Chem. Int. Ed. 2020; 59: 5022
    • 2b Guo Y, Bae J, Fang Z, Li P, Zhao F, Yu G. Chem. Rev. 2020; 120: 7642
    • 2c Peppas N, Hilt JZ, Khademhosseini A, Langer R. Adv. Mater. 2006; 18: 1345
  • 3 Wang W, Narain R, Zeng H. Hydrogels. Polymer Science and Nanotechnology. Narain R. Elsevier; Amsterdam: 2020: 203 DOI: 10.1016/B978-0-12-816806-6.00010-8
  • 4 Varnava CK, Patrickios CS. Polymer 2021; 215: 123322
    • 5a Bashari A, Rouhani Shirvan A, Shakeri M. Polym. Adv. Technol. 2018; 29: 2853
    • 5b Chawla P, Srivastava AR, Pandey P, Chawla V. Mini-Rev. Med. Chem. 2014; 14: 154
    • 6a Ai F, Yin X, Hu R, Ma H, Liu W. Agric. Water Manage. 2021; 245: 106513
    • 6b Sui X, Guo H, Cai C, Li Q, Wen C, Zhang X, Wang X, Yang J, Zhang L. Chem. Eng. J. 2021; 419: 129478
    • 7a Mao X, Cheng R, Zhang H, Bae J, Cheng L, Zhang L, Deng L, Cui W, Zhang Y, Santos H, Sun X. Adv. Sci. 2019; 6: 1801555
    • 7b Naahidi S, Jafari M, Logan M, Wang Y, Yuan Y, Bae H, Dixon B, Chen P. Biotechnol. Adv. 2017; 35: 530
    • 7c Xue X, Hu Y, Wang S, Chen X, Jiang Y, Su J. Bioact. Mater. 2022; 12: 327
    • 7d Gan D, Xu T, Xing W, Ge X, Fang L, Wang K, Ren F, Lu X. Adv. Funct. Mater. 2019; 29: 1805964
    • 8a Sanches SCd. C, Re MI, Silva-Junior JOC, Ribeiro-Costa RM. Gels 2023; 9: 150
    • 8b Kirilov P, Rum S, Gilbert E, Roussel L, Salmon D, Abdayem R, Serre C, Villa C, Haftek M, Falson F, Pirot F. Int. J. Cosmet. Sci. 2014; 36: 336
  • 9 Yu H, Huang Q. J. Agric. Food Chem. 2012; 60: 5373
  • 10 Li Y, Gong D, Zhou Y, Zhang C, Zhang C, Sheng Y, Peng S. Polymers (Basel) 2022; 14: 1596
    • 11a Holback H, Yeo Y, Park K. Hydrogel Swelling Behavior and Its Biomedical Applications.. Biomedical Hydrogels. Rimmer S. Woodhead Publishing; Cambridge: 2011: 3 DOI: 10.1533/9780857091383.1.3
    • 11b Ottenbrite RM, Park K, Okano T. Biomedical Applications of Hydrogels Handbook. Springer; New York: 2010
  • 12 Koetting MC, Peters JT, Steichen SD, Peppas NA. Mater. Sci. Eng., R 2015; 93: 1
  • 13 Jia D, Muthukumar M. Gels 2021; 7: 49
  • 14 Hossen MJ, Sarkar SD, Uddin MM, Roy CK, Azam MS. Chemistryselect 2020; 5: 8906
  • 15 Chen Q, Zhu L, Zhao C, Wang Q, Zheng J. Adv. Mater. 2013; 25: 4171
  • 16 Buwalda SJ, Boere KWM, Dijkstra PJ, Feijen J, Vermonden T, Hennink WE. J. Controlled Release 2014; 190: 254
    • 17a Pita-López ML, Fletes-Vargas G, Espinosa-Andrews H, Rodríguez-Rodríguez R. Eur. Polym. J. 2021; 145: 110176
    • 17b Wang J, Zhuang S. J. Cleaner Prod. 2022; 355: 131825
    • 17c Gonsalves AD, Araujo CRM, Soares NA, Goulart MOF, de Abreu FC. Quim. Nova 2011; 34: 1215
    • 17d Tang S, Yang J, Lin L, Peng K, Chen Y, Jin S, Yao W. Chem. Eng. J. 2020; 393: 124728
    • 17e Li L, Zhao J, Sun Y, Yu F, Ma J. Chem. Eng. J. 2019; 372: 1091
    • 17f Zainal SH, Mohd NH, Suhaili N, Anuar FH, Lazim AM, Othaman R. J. Mater. Res. Technol. 2021; 10: 935
  • 18 Payyappilly S, Dhara S, Chattopadhyay S. J. Biomed. Mater. Res. Part A 2014; 102: 1500
    • 19a Daniel C, Deluca MD, Guenet J-M, Brûlet A, Menelle A. Polymer 1996; 37: 1273
    • 19b Daniel C, Dammer C, Guenet J-M. Polymer 1994; 35: 4243
    • 20a Zeng L, Lin X, Li P, Liu F-Q, Guo H, Li W-H. Prog. Org. Coat. 2021; 159: 106417
    • 20b Terech P, Weiss RG. Chem. Rev. 1997; 97: 3133
    • 20c Vintiloiu A, Leroux J-C. J. Controlled Release 2008; 125: 179
  • 21 Redaelli F, Sorbona M, Rossi F. 10 – Synthesis and Processing of Hydrogels for Medical Applications.. Bioresorbable Polymers for Biomedical Applications. Perale G, Hilborn J. Woodhead Publishing; Cambridge: 2017: 205 DOI: 10.1016/B978-0-08-100262-9.00010-0
    • 22a Künzler JF. Hydrogels. Encyclopedia of Polymer Science and Technology. Mark HF, Kroschwitz JI. John Wiley & Sons; New York: 2002: 691 DOI: 10.1002/0471440264.pst158
    • 22b Buchholz FL. Preparation Methods of Superabsorbent Polyacrylates. Superabsorbent Polymers. Buchholz FL, Peppas NA. American Chemical Society; Washington: 1994: 27
    • 23a Tsao R, Yang R, Christopher J, Zhu Y, Zhu HH. J. Agric. Food Chem. 2003; 51: 6347
    • 23b Podzimek S. Chromatography, Size Exclusion. Encyclopedia of Polymer Science and Technology. Mark HF, Kroschwitz JI. John Wiley & Sons; New York: 2002: 1 DOI: 10.1002/0471440264.pst058
  • 24 Martens P, Blundo J, Nilasaroya A, Odell RA, Cooper-White J, Poole-Warren LA. Chem. Mater. 2007; 19: 2641
  • 25 Larush L, Kaner I, Fluksman A, Tamsut A, Pawar AA, Lesnovski P, Benny O, Magdassi S. J. 3D Print. Med. 2017; 1: 219
    • 26a Wu Q, Fu Y, Yang W, Liu S. Gels 2022; 8: 570
    • 26b Cuggino JC, Igarzabal CIA, Rueda JC, Quinzani LM, Komber H, Strumia MC. Eur. Polym. J. 2008; 44: 3548
    • 26c Maurya SD, Kurmvanshi SK, Mohanty S, Nayak SK. Macromol. Res. 2017; 25: 871
    • 27a Mohapatra R, Swain AK, Mohapatra R, Rana PK, Sahoo PK. Polym. Polym. Compos. 2005; 13: 807
    • 27b Can HK, Rzaev ZMO, Guner A. J. Appl. Polym. Sci. 2003; 90: 4009
    • 27c Swarnalatha S, Gopi R, Kumar AG, Selvi PK, Sekaran G. J. Mater. Sci. -Mater. Med. 2008; 19: 3005
    • 28a Zhu W, Ding J. J. Appl. Polym. Sci. 2006; 99: 2375
    • 28b Kabiri K, Omidian H, Hashemi SA, Zohuriaan-Mehr MJ. Eur. Polym. J. 2003; 39: 1341
  • 29 Hong Y, Mao Z, Wang H, Gao C, Shen J. J. Biomed. Mater. Res. Part A 2006; 79a: 913
    • 30a Tomal W, Ortyl J. Polymers (Basel) 2020; 12: 1073
    • 30b Kuru EA, Orakdogen N, Okay O. Eur. Polym. J. 2007; 43: 2913
  • 31 Liu Y, Wang P, Wang J, Xu B, Xu J, Yuan J-g, Yu Y-y, Wang Q. New J. Chem. 2020; 44: 4092
  • 32 Elliott JE, Macdonald M, Nie J, Bowman CN. Polymer 2004; 45: 1503
  • 33 Pianorsi MD, Raudino M, Bonelli N, Chelazzi D, Giorgi R, Fratini E, Baglioni P. Pure Appl. Chem. 2017; 89: 3
  • 34 Ohta M, Boddu VM, Uchimiya M, Sada K. Polym. Bull. 2011; 67: 915
  • 35 Roy SG, Haldar U, De P. ACS Appl. Mater. Interfaces 2014; 6: 4233
  • 36 Singhal R, Gupta K. Polym.-Plast. Technol. Mater. 2016; 55: 54
  • 37 Okay O. Adv. Polym. Sci. 2015; 268: 101
  • 38 Li Z, Zhou Y, Li T, Zhang J, Tian H. View-China 2022; 3: 20200112
  • 39 Darban Z, Shahabuddin S, Gaur R, Ahmad I, Sridewi N. Gels 2022; 8: 263
  • 40 Meka VS, Singe MKG, Pichika MR, Nali SR, Kolapaili VRM, Kesharwani P. Drug Discovery Today 2017; 22: 1697
  • 41 Wanasingha N, Dorishetty P, Dutta NK, Choudhury NR. Gels 2021; 7: 148
  • 42 Gunther U, Sigolaeva LV, Pergushov DV, Schacher FH. Macromol. Chem. Phys. 2013; 214: 2202
  • 43 Max JB, Pergushov DV, Sigolaeva LV, Schacher FH. Polym. Chem. 2019; 10: 3006
    • 44a Biehl P, von der Lühe M, Schacher FH. Macromol. Rapid Commun. 2018; 39: 1800017
    • 44b von der Lühe M, Weidner A, Dutz S, Schacher FH. ACS Appl. Nano Mater. 2018; 1: 232
  • 45 Tanaka H, Suzuka T, Hada K, Tezuka Y. Polym. J. 2000; 32: 391
  • 46 Kruse J-H, Biehl P, Schacher FH. Macromol. Rapid Commun. 2019; 40: 1800857
  • 47 Billing M, Schacher FH. Macromolecules 2016; 49: 3696
    • 48a Çeper T, Nabiyan A, Neumann C, Turchanin A, Schacher FH. ACS Appl. Polym. Mater. 2023; 5: 6493
    • 48b Kowalczuk K, Mons PJ, Ulrich HF, Wegner VD, Brendel JC, Mosig AS, Schacher FH. Macromol. Biosci. 2023; 2300230 DOI: 10.1002/mabi.202300230.
  • 49 Feldman D. Des. Monomers Polym. 2008; 11: 1
    • 50a Feng XD, Guo XQ, Qiu KY. Makromol. Chem. 1988; 189: 77
    • 50b Orakdogen N, Okay O. J. Appl. Polym. Sci. 2007; 103: 3228
  • 51 Schott H. J. Macromol. Sci. Part B Phys. 1992; 31: 1
  • 52 Ono T, Sugimoto T, Shinkai S, Sada K. Nat. Mater. 2007; 6: 429
  • 53 Kumar R, Katare OP. AAPS PharmSciTech 2005; 6: E298
  • 54 Billing M, Festag G, Bellstedt P, Schacher FH. Polym. Chem. 2017; 8: 936
  • 55 Raghuwanshi VS, Garnier G. Adv. Colloid Interface Sci. 2019; 274: 102044
  • 56 Hu Y, Kim Y, Jeong J-p, Park S, Shin Y, Ki Hong I, Sung Kim M, Jung S. Eur. Polym. J. 2022; 174: 111308
  • 57 Jastram A, Claus J, Janmey PA, Kragl U. Polym. Test. 2021; 93: 106943
    • 58a Sinha V, Chakma S. J. Environ. Chem. Eng. 2019; 7: 103295
    • 58b Ozay O, Ekici S, Baran Y, Kubilay S, Aktas N, Sahiner N. Desalination 2010; 260: 57
  • 59 Fernández-Pérez G AMarbán. ACS Omega 2020; 5: 29801
  • 60 Max JB, Nabiyan A, Eichhorn J, Schacher FH. Macromol. Rapid Commun. 2021; 42: 2000671