Subscribe to RSS
DOI: 10.1055/a-2241-0243
Pentacene to Octacene: The Limit of Fourfold TIPS-Ethynylation
Abstract
Soluble acenes beyond hexacene are rare. Their sensitivity complicates isolation, purification and application in devices. To increase the stability of acenes, functionalization with trialkylsilylethynyl substituents prevents [4 + 4] dimerization and oxidation. At the same time, such acenes are soluble and processible. Here we present the modular synthesis of fourfold tri-iso-propylsilylethynyl-ethynylated pentacenes to octacenes and investigate their optical and redox properties, frontier orbital positions (CV, density functional theory calculations) as well as their stability in solution (UV/vis, NMR spectroscopy). We also investigated their magnetic properties as a function of acene length. Pentacene, hexacene and heptacene are sufficiently stable to serve as semiconductors in thin-film transistors – the octacene rapidly decays to its butterfly dimer evidence by time-dependent NMR spectroscopy and crystal structure analysis.
Key words
acenes - heptacene - hexacene - octacene - pentacene - polycyclic aromatic hydrocarbons - steric shieldingPrimary Data
Compound characterization data are available through heiDATA, the institutional research data repository of Heidelberg University, under https://doi.org/10.11588/data/DDJFGS.
Publication History
Received: 31 August 2023
Accepted after revision: 04 December 2023
Accepted Manuscript online:
09 January 2024
Article published online:
01 February 2024
© 2024. The Authors. This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/).
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Anthony JE. Chem. Rev. 2006; 106: 5028
- 1b Bendikov M, Wudl F, Perepichka DF. Chem. Rev. 2004; 104: 4891
- 2a Takeyama Y, Ono S, Matsumoto Y. Appl. Phys. Lett. 2012; 101: 083303
- 2b Jurchescu OD, Baas J, Palstra TTM. Appl. Phys. Lett. 2004; 84: 3061
- 2c Jurchescu OD, Popinciuc M, van Wees BJ, Palstra TTM. Adv. Mater. 2007; 19: 688
- 2d Abthagir PS, Ha Y-G, You E-A, Jeong S-H, Seo H-S, Choi J-H. J. Phys. Chem. B 2005; 109: 23918
- 2e Li H, Tee BCK, Giri G, Chung JW, Lee SY, Bao Z. Adv. Mater. 2012; 24: 2588
- 2f Teixeira da Rocha C, Haase K, Zheng Y, Löffler M, Hambsch M, Mannsfeld SCB. Adv. Electron. Mater. 2018; 4: 1800141
- 2g Colin R, Mark R, Mang-mang L, Zhenan B. Mater. Today 2004; 7: 20
- 3 Deng W-Q, Goddard WA. J. Phys. Chem. B 2004; 108: 8614
- 4 Cheng YC, Silbey RJ, Filho DAd. S, Calbert JP, Cornil J, Brédas JL. J. Chem. Phys. 2003; 118: 3764
- 5 Brocks G, van den Brink J, Morpurgo AF. Phys. Rev. Lett. 2004; 93: 146405
- 6 Clar E. Ber. Dtsch. Chem. Ges. 1939; 72: 2137
- 7a Reddy AR, Bendikov M. Chem. Commun. 2006; 11: 1179
- 7b Berg O, Chronister EL, Yamashita T, Scott GW, Sweet RM, Calabrese J. J. Phys. Chem. A 1999; 103: 2451
- 8 Kaur I, Jia W, Kopreski RP, Selvarasah S, Dokmeci MR, Pramanik C, McGruer NE, Miller GP. J. Am. Chem. Soc. 2008; 130: 16274
- 9 Eisenhut F, Kühne T, García F, Fernández S, Guitián E, Pérez D, Trinquier G, Cuniberti G, Joachim C, Peña D, Moresco F. ACS Nano 2020; 14: 1011
- 10a Mondal R, Shah BK, Neckers DC. J. Am. Chem. Soc. 2006; 128: 9612
- 10b Zuzak R, Dorel R, Kolmer M, Szymonski M, Godlewski S, Echavarren AM. Angew. Chem. Int. Ed. 2018; 57: 10500
- 11a Zeitter N, Hippchen N, Maier S, Rominger F, Dreuw A, Freudenberg J, Bunz UHF. Angew. Chem. Int. Ed. 2022; 61: e202200918
- 11b Kaur I, Stein NN, Kopreski RP, Miller GP. J. Am. Chem. Soc. 2009; 131: 3424
- 11c Chun D, Cheng Y, Wudl F. Angew. Chem. Int. Ed. 2008; 47: 8380
- 11d Qu H, Chi C. Org. Lett. 2010; 12: 3360
- 11e Purushothaman B, Bruzek M, Parkin SR, Miller A-F, Anthony JE. Angew. Chem. Int. Ed. 2011; 50: 7013
- 11f Zeitter N, Hippchen N, Jäger P, Weidlich A, Ludwig P, Rominger F, Dreuw A, Freudenberg J, Bunz UH. Chem. Eur. J. 2023; n/a e202302323
- 12 Payne MM, Parkin SR, Anthony JE. J. Am. Chem. Soc. 2005; 127: 8028
- 13a Brega V, Yan Y, Thomas SW. Org. Biomol. Chem. 2020; 18: 9191
- 13b Aubry J-M, Pierlot C, Rigaudy J, Schmidt R. Acc. Chem. Res. 2003; 36: 668
- 14 Purushothaman B, Parkin SR, Anthony JE. Org. Lett. 2010; 12: 2060
- 15 Kitamura K, Kudo R, Sugiyama H, Uekusa H, Hamura T. Chem. Commun. 2020; 56: 14988
- 16 Pascal RA. Chem. Rev. 2006; 106: 4809
- 17a Anthony JE, Eaton DL, Parkin SR. Org. Lett. 2002; 4: 15
- 17b Payne MM, Odom SA, Parkin SR, Anthony JE. Org. Lett. 2004; 6: 3325
- 18 Jousselin-Oba T, Mamada M, Wright K, Marrot J, Adachi C, Yassar A, Frigoli M. Angew. Chem. Int. Ed. 2022; 61: e202112794
- 19a Bettinger HF, Tönshoff C. Chem. Rec. 2015; 15: 364
- 19b Huang R, Phan H, Herng TS, Hu P, Zeng W, Dong S-q, Das S, Shen Y, Ding J, Casanova D, Wu J. J. Am. Chem. Soc. 2016; 138: 10323
- 19c Tönshoff C, Bettinger HF. Polyarenes I. Siegel JS, Wu Y-T. Springer Berlin Heidelberg; Berlin, Heidelberg: 2014: 1-30
- 20 Due to the low stability and the measurement under ambient conditions, it cannot be completely avoided that the solution already contained decomposition products. Its reduction and oxidation potentials fit well into the series of acenes presented here.
- 21 Cardona CM, Li W, Kaifer AE, Stockdale D, Bazan GC. Adv. Mater. 2011; 23: 2367