Erfahrungsheilkunde 2024; 73(02): 82-90
DOI: 10.1055/a-2257-6314
Praxis

Einfluss von NADH-Supplementation in Kombination mit Fitnesstraining auf die Kognition sowie die physische und psychische Leistungsfähigkeit: Studienergebnisse

Dietmar Rösler
,
Kathrin Mikkeleit
,
Gertrude Markolin
,
Barbara Kocher
,
Julia Horn
,
Kerstin Schrotter
,
Claudia Wegberger
,
Norbert Fuchs

Zusammenfassung

Ziel dieser prospektiven randomisierten placebokontrollierten Doppelblindstudie war die Erhebung des Einflusses einer vierwöchigen NADH-Supplementation in Kombination mit einem Trainingsprogramm auf kognitive Fähigkeiten, Gesundheitszustand und auf die physische und physische Leistungsfähigkeit eines untrainierten Kollektivs. 27 statistisch vergleichbare gesunde Erwachsene nahmen vier Wochen lang an einem gezielten Trainingsprogramm teil und erhielten parallel entweder 10 mg NADH/Tag oder ein wirkstofffreies Placebopräparat. Die Sportintervention allein führte zu einer Verbesserung in sämtlichen getesteten Bereichen (motorische und kognitive Fähigkeiten, gesundheitsbezogene Lebensqualität). Die NADH-Supplementation resultierte in einer zusätzlichen Verbesserung des Gesamtgesundheitszustands sowie in einer 14,3%igen Steigerung der kognitiven Fähigkeiten im Vergleich zur Placebogruppe.

Abstract

The aim of this prospective randomized placebo-controlled double-blind study was to evaluate the influence of a four-week NADH supplementation in combination with an exercise program on cognitive functions, health status, and on physical and mental performance in an untrained collective. Twenty-seven statistically comparable healthy adults participated in a directed exercise program for 4 weeks while taking either 10 mg NADH/day or a placebo preparation. The exercise intervention alone resulted in improvement in all tested domains (motor and cognitive skills, health-related quality of life). NADH supplementation resulted in an additional improvement in overall health status and a 14.3 % increase in cognitive abilities compared with the placebo group.



Publication History

Article published online:
09 April 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Birkmayer GD, Grathwohl D, Klann M. et al. Stabilized NADH improves the physical and mental performance in highly conditioned athletes. Proceedings of the first International Conference on the Mechanism and Action of Nutraceuticals (ICMAN). Dubrovnik 2001; 1-3
  • 2 Birkmayer GD, Kay GG, Vürre E. Stabilized NADH (ENADA) improves jet lag-induced cognitive performance deficit. Wien Med Wochenschr 2002; 152: 450-454
  • 3 Birkmayer JGD, Birkmayer W. The coenzyme nicotinamide adenine dinucleotide (NADH) as biological antidepressive agent: Experience with 205 patients. New Trends Clin Neuropharmacol 1991; 5: 19-25
  • 4 Birkmayer JGD, Vank P. Reduced coenzyme 1 (NADH) improves psychomotoric and physical performance in athletes. New York: Menuco Corp.; 1996
  • 5 Birkmayer W, Birkmayer GJD, Vrecko K. et al. The coenzyme nicotinamide adenine dinucleotide (NADH) improves the disability of Parkinsonian patients. J Neural Transm Park Dis Dement Sect 1989; 1: 297-302
  • 6 Brakedal B, Dölle C, Riemer F. et al. The NADPARK study: A randomized phase I trial of nicotinamide riboside supplementation in Parkinson’s disease. Cell Metab 2022; 34: 396-407
  • 7 Brickenkamp R, Schmidt-Atzert L, Liepmann D. Test d2-Revision: Aufmerksamkeits-und Konzentrationstest. Göttingen: Hogrefe; 2010
  • 8 Bugaj O, Kusy K, Kantanista A. et al. The effect of a 7-week training period on changes in skin NADH fluorescence in highly trained athletes. Appl Sci 2020; 10: 5133
  • 9 Bugaj O, Zieliński J, Kusy K. et al. The effect of exercise on the skin content of the reduced form of NAD and its response to transient ischemia and reperfusion in highly trained athletes. Frontiers Physiol 2019; 10: 600
  • 10 Bullinger M. German translation and psychometric testing of the SF-36 health survey: Preliminary results from the IQOLA project. Soc Sci Med 1995; 41: 1359-1366
  • 11 Busquets-Cortés C, Capó X, Martorell M. et al. Training and acute exercise modulates mitochondrial dynamics in football players’ blood mononuclear cells. Eur J Appl Physiol 2017; 117: 1977-1987
  • 12 Campagnolo N, Johnston S, Collatz A. et al. Dietary and nutrition interventions for the therapeutic treatment of chronic fatigue syndrome/myalgic encephalomyelitis: A systematic review. J Hum Nutr Diet 2017; 30: 247-259
  • 13 Castro-Marrero J, Sáez-Francas N, Segundo MJ. et al. Effect of coenzyme Q10 plus nicotinamide adenine dinucleotide supplementation on maximum heart rate after exercise testing in chronic fatigue syndrome: A randomized, controlled, double-blind trial. Clin Nutr 2016; 35: 826-834
  • 14 Demarin V, Podobnik SS, Storga-Tomic D. et al. Treatment of Alzheimer’s disease with stabilized oral nicotinamide adenine dinucleotide: A randomized, double-blind study. Drugs Exp Clin Res 2004; 30: 27-33
  • 15 Demarin V, Sarkanji SP, Storga-Tomic D. et al. ENADA/NADH improves cognitive impairment of Alzheimer patients. International conference on mechanisms and actions of neutraceuticals. 2002; 6-9
  • 16 Deslandes A, Moraes H, Ferreira C. et al. Exercise and mental health: Many reasons to move. Neuropsychobiology 2009; 59: 191-198
  • 17 Fuchs N. Mit Nährstoffen heilen: Eine Einführung in die Biochemie der nutriologischen Medizin. 5., überarb. u. erw. Aufl.. Köln: Reglin; 2020
  • 18 Hargreaves M, Spriet LL. Skeletal muscle energy metabolism during exercise. Nat Metab 2020; 2: 817-828
  • 19 Hollmann W, Strüder HK, Tagarakis CVM. Körperliche Aktivität fördert Gehirngesundheit und -leistungsfähigkeit. Nervenheilkunde 2003; 22: 467-474
  • 20 Holloway GP, Holwerda AM, Miotto PM. et al. Age-associated impairments in mitochondrial ADP sensitivity contribute to redox stress in senescent human skeletal muscle. Cell Rep 2018; 22: 2837-2848
  • 21 Kidd PM. Neurodegeneration from mitochondrial insufficiency: Nutrients, stem cells, growth factors, and prospects for brain rebuilding using integrative management. Altern Med Rev 2005; 10: 268-293
  • 22 Kuhn W, Müller T, Winkel R. et al. Parenteral application of NADH in Parkinson’s disease: Clinical improvement partially due to stimulation of endogenous levodopa biosynthesis. J Neural Transm 1996; 103: 1187-1193
  • 23 Lafontaine MP, Knoth IS, Lippé S. Chapter 20 – Learning abilities. In: Gallagher A, Bulteau C, Cohen D. et al. eds. Neurocognitive Development: Normative Development. Elsevier; 2020: 241-254
  • 24 Lamb DA, Moore JH, Mesquita PHC. et al. Resistance training increases muscle NAD+ and NADH concentrations as well as NAMPT protein levels and global sirtuin activity in middle-aged, overweight, untrained individuals. Aging (Albany, NY) 2020; 12: 9447-9460
  • 25 Lu G, Li J, Zhang H. et al. Role and possible mechanisms of Sirt1 in depression. Oxid Med Cell Longev 2018 8596903.
  • 26 Mayevsky A, Barbiro-Michaely E. Use of NADH fluorescence to determine mitochondrial function in vivo. Int J Biochem Cell Biol 2009; 41: 1977-1988
  • 27 MedCalc Software Ltd.. MedCalc Statistical Software version 19.2.6. Ostend, Belgium 2020 Im Internet: Accessed February 01, 2024 at: https://www.medcalc.org
  • 28 Mero A, Raitanen R, Birkmayer J. et al. Effects of nicotinamide adenine dinucleotide hydride on physical and mental performance. J Sports Sci 2008; 26: 311-319
  • 29 Reimers CD, Knapp G, Tettenborn B. Einfluss körperlicher Aktivität auf die Kognition. Ist körperliche Aktivität Demenz-präventiv? Akt Neurol 2012; 39: 276-291
  • 30 Rex A, Schickert R, Fink H. Antidepressant-like effect of nicotinamide adenine dinucleotide in the forced swim test in rats. Pharmacol Biochem Behav 2004; 77: 303-307
  • 31 Rex A, Spychalla M, Fink H. Treatment with reduced nicotinamide adenine dinucleotide (NADH) improves water maze performance in old Wistar rats. Behav Brain Res 2004; 154: 149-153
  • 32 Robinson MM, Dasari S, Konopka AR. et al. Enhanced protein translation underlies improved metabolic and physical adaptations to different exercise training modes in young and old humans. Cell Metab 2017; 25: 581-592
  • 33 Rösler D, Fuchs N, Markolin G. et al. Einfluss einer NADH-haltigen Nährstoffkombination auf Gedächtnis, Konzentration und Grundstimmung. OM Ernähr 2008; 125: F20-F25
  • 34 Ruegsegger GN, Booth FW. Health benefits of exercise. Cold Spring Harb Perspect Med 2018; 8: a029694
  • 35 Sibrecht G, Bugaj O, Filberek P. et al. Flow-mediated skin fluorescence method for non-invasive measurement of the NADH at 460 nm: A possibility to assess the mitochondrial function. Postepy Biologii Komorki 2017; 44: 333-351
  • 36 Tang JE, Hartman JW, Phillips SM. Increased muscle oxidative potential following resistance training induced fibre hypertrophy in young men. Appl Phys Nutr Metabol 2006; 31: 495-501
  • 37 White AT, Schenk S. NAD+/NADH and skeletal muscle mitochondrial adaptations to exercise. Am J Physiol Endocrinol Metab 2012; 303: E308-E321
  • 38 Yan Z, Lira VA, Greene NP. Exercise training-induced regulation of mitochondrial quality. Exerc Sport Sci Rev 2012; 40: 159-164
  • 39 Yang J, He L, Wang J. et al. Early administration of nicotinamide prevents learning and memory impairment in mice induced by 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine. Pharmacol Biochem Behav 2004; 78: 179-183
  • 40 Zechner N. Auswirkungen von Bewegung und Sport auf die kognitiven Funktionen bei Kindern und Jugendlichen. Dissertation Graz: Karl-Franzens-Universität; 2018