CC BY 4.0 · Organic Materials 2024; 06(02): 18-32
DOI: 10.1055/a-2291-8578
Covalent Organic Frameworks (COFs)
Review

Research Progress of β-Ketoenamine-Linked Covalent Organic Frameworks for Photocatalytic Hydrogen Evolution

Ping Xue#
a   School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, P. R. of China
,
Mingyuan Li#
b   College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan, 430000, P. R. of China
,
Mi Tang
c   Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, P. R. of China
,
Zhengbang Wang
c   Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, P. R. of China
,
d   School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan 430074, P. R. of China
› Author Affiliations


Abstract

β-Ketoamide covalent organic frameworks (COFs), also named Tp-COFs, are considered to be a milestone material in the history of photocatalysts because of their excellent visible-light absorption, high crystallinity, ultra-high stability and structural diversity. In recent years, a large number of Tp-COFs and their composites have been successfully constructed based on molecular or composite engineering strategies, and exhibited splendid photocatalytic water splitting activity. In comparison with a composite strategy, the molecular engineering technique effectively avoids interface problems by designing and preparing frameworks at the molecular level. Therefore, it is necessary to timely summarize the construction of Tp-COF photocatalysts based on the molecular engineering strategy, so as to provide some theoretical basis and enlightenment for the subsequent development of high-performance Tp-COFs. Finally, the shortcomings and challenges of this technique and personal views on the further development of Tp-COFs are presented.

# These authors contributed equally to this work.




Publication History

Received: 25 December 2023

Accepted after revision: 28 February 2024

Accepted Manuscript online:
20 March 2024

Article published online:
29 April 2024

© 2024. The Authors. This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/).

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Ni M, Leung MKH, Sumathy K, Leung DYC. Int. J. Hydrogen Energy 2006; 31: 1401
    • 1b Abe JO, Popoola API, Ajenifuja E, Popoola OM. Int. J. Hydrogen Energy 2019; 44: 15072
  • 2 Lin L, Hisatomi T, Chen S, Takata T, Domen K. Trends Chem. 2020; 2: 813
  • 3 Abe R. J. Photochem. Photobiol., C 2010; 11: 179
    • 4a Kong M, Li Y, Chen X, Tian T, Fang P, Zheng F, Zhao X. J. Am. Chem. Soc. 2011; 133: 16414
    • 4b Zhang FM, Sheng JL, Yang ZD, Sun XJ, Tang HL, Lu M, Dong H, Shen FC, Liu J, Lan YQ. Angew. Chem. Int. Ed. 2018; 57: 12106
    • 4c Li L, Yan J, Wang T, Zhao Z-J, Zhang J, Gong J, Guan N. Nat. Commun. 2015; 6: 5881
    • 4d Zhou Q, Guo Y, Zhu Y. Nat. Catal. 2023; 6: 574
    • 4e Zheng X, Feng L, Dou Y, Guo H, Liang Y, Li G, He J, Liu P, He J. ACS Nano 2021; 15: 13209
    • 4f Weng W, Guo J. Nat. Commun. 2022; 13: 5768
    • 5a Osterloh FE. Chem. Soc. Rev. 2013; 42: 2294
    • 5b Freund R, Zaremba O, Arnauts G, Ameloot R, Skorupskii G, Dincă M, Bavykina A, Gascon J, Ejsmont A, Goscianska J, Kalmutzki M, Lächelt U, Ploetz E, Diercks CS, Wuttke S. Angew. Chem. Int. Ed. 2021; 60: 23975
    • 5c Luo T, Gilmanova L, Kaskel S. Coord. Chem. Rev. 2023; 490: 215210
    • 6a Banerjee T, Bennett T, Butler K, Easun TL, Eddaoudi M, Forgan R, Gagliardi L, Hendon C, Jorge M, Lamberti C, Lee J-SM, Leus K, Li J, Lin W, Ranocchiari M, Rosi N, Santaclara JG, Shevlin S, Svane K, Ting V, van der Veen M, Van Der Voort P, Walsh A, Woods D, Yaghi OM, Zhu G. Faraday Discuss. 2017; 201: 87
    • 6b Zhang F, Li X, Dong X, Hao H, Lang X. Chin. J. Catal. 2022; 43: 2395
    • 6c Xiong K, Zhang F, Wang Y, Zeng B, Lang X. J. Colloid Interface Sci. 2023; 643: 340
  • 7 Stegbauer L, Schwinghammer K, Lotsch BV. Chem. Sci. 2014; 5: 2789
    • 8a Mi Z, Zhou T, Weng W, Unruangsri J, Hu K, Yang W, Wang C, Zhang KAI, Guo J. Angew. Chem. Int. Ed. 2021; 60: 9642
    • 8b Zhong Y, Dong W, Ren S, Li L. Adv. Mater. 2023; e2308251
    • 8c Guan X, Qian Y, Zhang X, Jiang H-L. Angew. Chem. Int. Ed. 2023; 62: e202306135
    • 8d Wang S, Wu T, Wu S, Guo J, He T, Wu Y, Yuan W, Zhang Z, Hua Y, Zhao Y. Angew. Chem. Int. Ed. 2023; 62: e202311082
    • 8e Wang X, Chen L, Chong SY, Little MA, Wu Y, Zhu W-H, Clowes R, Yan Y, Zwijnenburg MA, Sprick RS, Cooper AI. Nat. Chem. 2018; 10: 1180
  • 9 Kandambeth S, Mallick A, Lukose B, Mane MV, Heine T, Banerjee R. J. Am. Chem. Soc. 2012; 134: 19524
    • 10a Ming J, Liu A, Zhao J, Zhang P, Huang H, Lin H, Xu Z, Zhang X, Wang X, Hofkens J, Roeffaers MBJ, Long J. Angew. Chem. Int. Ed. 2019; 58: 18290
    • 10b Ding S-Y, Wang P-L, Yin G-L, Zhang X, Lu G. Int. J. Hydrogen Energy 2019; 44: 11872
    • 10c Dong H, Meng X-B, Zhang X, Tang H-L, Liu J-W, Wang J-H, Wei J-Z, Zhang F-M, Bai L-L, Sun X-J. Chem. Eng. J. 2020; 379: 122342
    • 10d Zhang Y-P, Tang H-L, Dong H, Gao M-Y, Li C-C, Sun X-J, Wei J-Z, Qu Y, Li Z-J, Zhang F-M. J. Mater. Chem. A 2020; 8: 4334
    • 10e Yao Y-H, Li J, Zhang H, Tang H-L, Fang L, Niu G-D, Sun X-J, Zhang F-M. J. Mater. Chem. A 2020; 8: 8949
    • 10f Xue P, Pan X, Huang J, Gao Y, Guo W, Li J, Tang M, Wang Z. ACS Appl. Mater. Interfaces 2021; 13: 59915
    • 10g Xue P, Chen W, Tang M, Wang Z, Wang Z. Mol. Catal. 2023; 535: 112807
    • 10h Wang L, Zhang L, Lin B, Zheng Y, Chen J, Zheng Y, Gao B, Long J, Chen Y. Small 2021; 17: 2101017
    • 10i Li Y, Karimi M, Gong Y-N, Dai N, Safarifard V, Jiang H-L. Matter 2021; 4: 2230
    • 10j Li C-C, Gao M-Y, Sun X-J, Tang H-L, Dong H, Zhang F-M. Appl. Catal., B 2020; 266: 118586
    • 10k Zhang F, Xiong K, Lang X. ChemCatChem 2023; 15: e202301179
  • 11 Wu Z, Huang X, Li X, Hai G, Li B, Wang G. Sci. China Chem. 2021; 64: 2169
  • 12 Wu X, Han X, Liu Y, Liu Y, Cui Y. J. Am. Chem. Soc. 2018; 140: 16124
    • 13a Gao M-Y, Li C-C, Tang H-L, Sun X-J, Dong H, Zhang F-M. J. Mater. Chem. A 2019; 7: 20193
    • 13b Karthik P, Vinoth R, Zhang P, Choi W, Balaraman E, Neppolian B. ACS Appl. Energy Mater. 2018; 1: 1913
  • 14 Zhang H-Y, Yang Y, Li C-C, Tang H-L, Zhang F-M, Zhang G-L, Yan H. J. Mater. Chem. A 2021; 9: 16743
  • 15 Li Y, Liu M, Wu J, Li J, Yu X, Zhang Q. Front. Optoelectron. 2022; 15: 38
  • 16 Wang L-J, Dong P-Y, Zhang G, Zhang F-M. Energy Fuels 2023; 37: 6323
  • 17 Bhadra M, Kandambeth S, Sahoo MK, Addicoat M, Balaraman E, Banerjee R. J. Am. Chem. Soc. 2019; 141: 6152
  • 18 Vitaku E, Dichtel WR. J. Am. Chem. Soc. 2017; 139: 12911
    • 19a Wang R, Kong W, Zhou T, Wang C, Guo J. Chem. Commun. 2021; 57: 331
    • 19b Daugherty MC, Vitaku E, Li RL, Evans AM, Chavez AD, Dichtel WR. Chem. Commun. 2019; 55: 2680
  • 20 Wei H, Chai S, Hu N, Yang Z, Wei L, Wang L. Chem. Commun. 2015; 51: 12178
  • 21 Biswal BP, Chandra S, Kandambeth S, Lukose B, Heine T, Banerjee R. J. Am. Chem. Soc. 2013; 135: 5328
  • 22 Chandra S, Kandambeth S, Biswal BP, Lukose B, Kunjir SM, Chaudhary M, Babarao R, Heine T, Banerjee R. J. Am. Chem. Soc. 2013; 135: 17853
  • 23 Shinde DB, Aiyappa HB, Bhadra M, Biswal BP, Wadge P, Kandambeth S, Garai B, Kundu T, Kurungot S, Banerjee R. J. Mater. Chem. A 2016; 4: 2682
    • 24a Karak S, Kumar S, Pachfule P, Banerjee R. J. Am. Chem. Soc. 2018; 140: 5138
    • 24b Karak S, Kandambeth S, Biswal BP, Sasmal HS, Kumar S, Pachfule P, Banerjee R. J. Am. Chem. Soc. 2017; 139: 1856
  • 25 Zhang J, Cheng C, Guan L, Jiang H-L, Jin S. J. Am. Chem. Soc. 2023; 145: 21974
  • 26 Wang R, Wei M, Wang Y. J. Membr. Sci. 2020; 604: 118090
  • 27 Dey K, Pal M, Rout KC, Kunjattu H S, Das A, Mukherjee R, Kharul UK, Banerjee R. J. Am. Chem. Soc. 2017; 139: 13083
  • 28 Ding C, Breunig M, Timm J, Marschall R, Senker J, Agarwal S. Adv. Funct. Mater. 2021; 31: 2106507
  • 29 Pachfule P, Acharjya A, Roeser J, Langenhahn T, Schwarze M, Schomäcker R, Thomas A, Schmidt J. J. Am. Chem. Soc. 2018; 140: 1423
  • 30 Yin L, Zhao Y, Xing Y, Tan H, Lang Z, Ho W, Wang Y, Li Y. Chem. Eng. J. 2021; 419: 129984
  • 31 Ghosh S, Nakada A, Springer MA, Kawaguchi T, Suzuki K, Kaji H, Baburin I, Kuc A, Heine T, Suzuki H, Abe R, Seki S. J. Am. Chem. Soc. 2020; 142: 9752
  • 32 Huang W, Hu Y, Qin Z, Ji Y, Zhao X, Wu Y, He Q, Li Y, Zhang C, Lu J, Li Y. Nat. Sci. Rev. 2022; 10: nwac171
  • 33 Wang X, Chen L, Chong SY, Little MA, Wu Y, Zhu W-H, Clowes R, Yan Y, Zwijnenburg MA, Sprick RS, Cooper AI. Nat. Chem. 2018; 10: 1180
  • 34 Zhou T, Wang L, Huang X, Unruangsri J, Zhang H, Wang R, Song Q, Yang Q, Li W, Wang C, Takahashi K, Xu H, Guo J. Nat. Commun. 2021; 12: 3934
  • 35 Zhang W, Chen L, Dai S, Zhao C, Ma C, Wei L, Zhu M, Chong SY, Yang H, Liu L, Bai Y, Yu M, Xu Y, Zhu X-W, Zhu Q, An S, Sprick RS, Little MA, Wu X, Jiang S, Wu Y, Zhang Y-B, Tian H, Zhu W-H, Cooper AI. Nature 2022; 604: 72
  • 36 Wang K, Zhong Y, Dong W, Xiao Y, Ren S, Li L. Angew. Chem. Int. Ed. 2023; 62: e202304611
  • 37 Zhang H, Lin Z, Kidkhunthod P, Guo J. Angew. Chem. Int. Ed. 2023; 62: e202217527
  • 38 Sheng J-L, Dong H, Meng X-B, Tang H-L, Yao Y-H, Liu D-Q, Bai L-L, Zhang F-M, Wei J-Z, Sun X-J. ChemCatChem 2019; 11: 2313
  • 39 Yang Y, Chu X, Zhang H-Y, Zhang R, Liu Y-H, Zhang F-M, Lu M, Yang Z-D, Lan Y-Q. Nat. Commun. 2023; 14: 593
  • 40 Lin C, Liu X, Yu B, Han C, Gong L, Wang C, Gao Y, Bian Y, Jiang J. ACS Appl. Mater. Interfaces 2021; 13: 27041
  • 41 Wang M, Wang Z, Shan M, Wang J, Qiu Z, Song J, Li Z. Chem. Mater. 2023; 35: 5368
  • 42 Li C, Liu J, Li H, Wu K, Wang J, Yang Q. Nat. Commun. 2022; 13: 2357
  • 43 Zhou T, Huang X, Mi Z, Zhu Y, Wang R, Wang C, Guo J. Polym. Chem. 2021; 12: 3250
  • 44 Qian K, Guan X, Sun N, Jiang H-L. Sci. China Chem. 2023; 66: 436
  • 45 Ren X, Li C, Kang W, Li H, Ta N, Ye S, Hu L, Wang X, Li C, Yang Q. CCS Chem. 2021; 4: 2429
    • 46a Zhang W, Smith J, Hamilton R, Heeney M, Kirkpatrick J, Song K, Watkins SE, Anthopoulos T, McCulloch I. J. Am. Chem. Soc. 2009; 131: 10814
    • 46b Sprick RS, Bonillo B, Clowes R, Guiglion P, Brownbill NJ, Slater BJ, Blanc F, Zwijnenburg MA, Adams DJ, Cooper AI. Angew. Chem. Int. Ed. 2016; 55: 1792
  • 47 Hu J, Chen C, Yang H, Yang F, Qu J, Yang X, Sun W, Dai L, Li CM. Appl. Catal., B 2022; 317: 121723
    • 48a Fu S, Jin E, Hanayama H, Zheng W, Zhang H, Di Virgilio L, Addicoat MA, Mezger M, Narita A, Bonn M, Müllen K, Wang HI. J. Am. Chem. Soc. 2022; 144: 7489
    • 48b Schweicher G, Garbay G, Jouclas R, Vibert F, Devaux F, Geerts YH. Adv. Mater. 2020; 32: 1905909
  • 49 Wang G-B, Zhu F-C, Lin Q-Q, Kan J-L, Xie K-H, Li S, Geng Y, Dong Y-B. Chem. Commun. 2021; 57: 4464
  • 50 Chen W, Wang L, Mo D, He F, Wen Z, Wu X, Xu H, Chen L. Angew. Chem. Int. Ed. 2020; 59: 16902
  • 51 Li Z, Zhou Y, Xie M, Cheng H, Wang T, Chen J, Lu Y, Tian Z, Lai Y, Yu G. Angew. Chem. 2023; 135: e202217815
    • 52a Zhao D, Wang Y, Dong C-L, Huang Y-C, Chen J, Xue F, Shen S, Guo L. Nat. Energy 2021; 6: 388
    • 52b Mo Z, Di J, Yan P, Lv C, Zhu X, Liu D, Song Y, Liu C, Yu Q, Li H, Lei Y, Xu H, Yan Q. Small 2020; 16: 2003914
    • 53a Wang C, Zhang H, Luo W, Sun T, Xu Y. Angew. Chem. Int. Ed. 2021; 60: 25381
    • 53b Zhang S, Cheng G, Guo L, Wang N, Tan B, Jin S. Angew. Chem. Int. Ed. 2020; 59: 6007
    • 54a Han J, Zhu Z, Li N, Chen D, Xu Q, Li H, He J, Lu J. Appl. Catal., B 2021; 291: 120108
    • 54b Yan Y, Yu X, Shao C, Hu Y, Huang W, Li Y. Adv. Funct. Mater. 2023; 2304604
    • 55a Liu Y, Wu J, Wang F. Appl. Catal., B 2022; 307: 121144
    • 55b Li Z, Deng T, Ma S, Zhang Z, Wu G, Wang J, Li Q, Xia H, Yang S-W, Liu X. J. Am. Chem. Soc. 2023; 145: 8364