Subscribe to RSS
DOI: 10.1055/a-2313-2097
Rational Design of Fluorophores Using MO Theory: Our Journey from BODIPYs to BOIMPYs
Abstract
This short review demonstrates how MO-theoretical considerations can support the tailor-made design of new dye scaffolds, specifically the recently introduced BOIMPY class of fluorophores. Starting with historical and structural foundations, the influence of canonical streptocyanines on the electronic features of diarylmethenes and rhodamines is examined and the BODIPY scaffold is introduced as the primary structural inspiration for our work. The attachment of five-membered ring heterocycles at the meso position of the BODIPY core enables a relaxation into a co-planar and twofold chelating triarylmethene system. After introduction of two electron-withdrawing BF2 units, efficient rigidity is achieved since hindered rotation prevents non-radiative dissipation of energy via excited state relaxation. Hence, a lowered LUMO level allows the combination of a large red shift with high quantum efficiencies. The synthetic approach to BOIMPYs is straightforward and analogous to BODIPY syntheses starting from benzimidazole or tetrazole carbaldehydes. Cyclic voltammetric measurements prove that BOIMPYs are able to easily accept two electrons and might act as efficient photoredox catalysts.
Publication History
Received: 20 March 2024
Accepted after revision: 22 April 2024
Accepted Manuscript online:
24 April 2024
Article published online:
07 August 2024
© 2024. The Authors. This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/).
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Ulrich G, Ziessel R, Harriman A. Angew. Chem. Int. Ed. 2008; 47: 1184
- 1b Ni Y, Wu J. Org. Biomol. Chem. 2014; 12: 3774
- 1c Sibold J, Kettelhoit K, Vuong L, Liu F, Werz DB, Steinem C. Angew. Chem. Int. Ed. 2019; 58: 17805
- 1d Wang S, Li B, Zhang F. ACS Cent. Sci. 2020; 6: 1302
- 1e Patalag LJ, Ahadi S, Lashchuk O, Jones PG, Ebbinghaus S, Werz DB. Angew. Chem. Int. Ed. 2021; 60: 8766
- 1f Selvaggio G, Nißler R, Nietmann P, Patra A, Patalag LJ, Janshoff A, Werz DB, Kruss S. Analyst 2022; 147: 230
- 1g Zeng S, Liu X, Kafuti YS, Kim H, Wang J, Peng X, Li H, Yoon J. Chem. Soc. Rev. 2023; 52: 5607
- 2a Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H. Chem. Rev. 2010; 110: 6595
- 2b Li L-L, Diau EW-G. Chem. Soc. Rev. 2013; 42: 291
- 2c Nicewicz DA, Nguyen TM. ACS Catal. 2014; 4: 355
- 2d Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
- 2e Klfout H, Stewart A, Elkhalifa M, He H. ACS Appl. Mater. Interfaces 2017; 9: 39873
- 2f Matsui JK, Lang SB, Heitz DR, Molander GA. ACS Catal. 2017; 7: 2563
- 2g Bobo MV, Kuchta JJ, Vannucci AK. Org. Biomol. Chem. 2021; 19: 4816
- 2h Markushyna Y, Savateev A. Eur. J. Org. Chem. 2022; 2022: e202200026
- 3a Loudet A, Burgess K. Chem. Rev. 2007; 107: 4891
- 3b Boens N, Verbelen B, Dehaen W. Eur. J. Org. Chem. 2015; 2015: 6577
- 3c Patalag LJ, Ulrichs JA, Jones PG, Werz DB. Org. Lett. 2017; 19: 2090
- 3d Patalag LJ, Ho LP, Jones PG, Werz DB. J. Am. Chem. Soc. 2017; 139: 15104
- 3e Patra A, Patalag LJ, Jones PG, Werz DB. Angew. Chem. Int. Ed. 2021; 60: 747
- 3f Patalag LJ, Hoche J, Holzapfel M, Schmiedel A, Mitric R, Lambert C, Werz DB. J. Am. Chem. Soc. 2021; 143: 7414
- 3g Patalag LJ, Hoche J, Mitric R, Werz DB, Feringa BL. Angew. Chem. Int. Ed. 2022; 61: e202116834
- 3h Köller HFvon, Geffers FJ, Kalvani P, Foraita A, Loß P-EJ, Butschke B, Jones PG, Werz DB. Chem. Commun. 2023; 59: 14697
- 3i Bozzi ÍAO, Machado LA, Diogo EBT, Delolo FG, Barros LOF, Graça GAP, Araujo MH, Martins FT, Pedrosa LF, Da Luz LC, Moraes ES, Rodembusch FS, Guimarães JSF, Oliveira AG, Röttger SH, Werz DB, Souza CP, Fantuzzi F, Han J, Marder TB, Braunschweig H, Da Silva Júnior EN. Chem. Eur. J. 2024; 30: e202303883
- 4 Patalag LJ, Jones PG, Werz DB. Angew. Chem. Int. Ed. 2016; 55: 13340
- 5 Twelve days after our initial report about BOIMPYs was released, another BODIPY-derived dye class was presented by Lee et al. who also named their new class of dyes BOIMPY: Lee B, Park BG, Cho W, Lee HY, Olasz A, Chen C-H, Park SB, Lee D. Chem. Eur. J. 2016; 22: 17321
- 6 König W, Treichel O. J. Prakt. Chem. 1921; 102: 63
- 7 Duxbury DF. Chem. Rev. 1993; 93: 381
- 8 Buene AF, Almenningen DM. J. Mater. Chem. C 2021; 9: 11974
- 9a Beija M, Afonso CAM, Martinho JMG. Chem. Soc. Rev. 2009; 38: 2410
- 9b Wang L, Du W, Hu Z, Uvdal K, Li L, Huang W. Angew. Chem. Int. Ed. 2019; 58: 14026
- 10 Döpp H, Maurer S, Sasaki AN, Musso H. Justus Liebigs Ann. Chem. 1982; 1982: 254
- 11a Benson RC, Kues HA. J. Chem. Eng. Data 1977; 22: 379
- 11b Gleiter R, Haberhauer G. Aromaticity and Other Conjugation Effects.. Wiley-VCH; Weinheim: 2012
- 11c Ichijo K, Kimura S, Yoshida T, Yamakado R, Okada S. ACS omega 2021; 6: 28421
- 12a Grimme S, Neese F. J. Chem. Phys. 2007; 127: 154116
- 12b Le Guennic B, Jacquemin D. Acc. Chem. Res. 2015; 48: 530
- 12c Momeni MR, Brown A. J. Chem. Theory Comput. 2015; 11: 2619
- 12d Feldt M, Brown A. J. Comput. Chem. 2021; 42: 144
- 13a Morozumi A, Kamiya M, Uno S-N, Umezawa K, Kojima R, Yoshihara T, Tobita S, Urano Y. J. Am. Chem. Soc. 2020; 142: 9625
- 13b Tachibana R, Kamiya M, Morozumi A, Miyazaki Y, Fujioka H, Nanjo A, Kojima R, Komatsu T, Ueno T, Hanaoka K, Yoshihara T, Tobita S, Urano Y. Chem. Commun. 2020; 56: 13173
- 14a Zhou X, Lai R, Beck JR, Li H, Stains CI. Chem. Commun. 2016; 52: 12290
- 14b Dejouy G, Laly M, Valverde IE, Romieu A. Dyes Pigm. 2018; 159: 262
- 15a Sazanovich IV, Kirmaier C, Hindin E, Yu L, Bocian DF, Lindsey JS, Holten D. J. Am. Chem. Soc. 2004; 126: 2664
- 15b Ikeda C, Ueda S, Nabeshima T. Chem. Commun. 2009; 2544
- 15c Filatov MA, Lebedev AY, Mukhin SN, Vinogradov SA, Cheprakov AV. J. Am. Chem. Soc. 2010; 132: 9552
- 15d Liu X, Nan H, Sun W, Zhang Q, Zhan M, Zou L, Xie Z, Li X, Lu C, Cheng Y. Dalton Trans. 2012; 41: 10199
- 15e Wan W, Silva MS, McMillen CD, Creager SE, Smith RC. J. Am. Chem. Soc. 2019; 141: 8703
- 16 Treibs A, Kreuzer F-H. Justus Liebigs Ann. Chem. 1968; 718: 208
- 17a Umezawa K, Nakamura Y, Makino H, Citterio D, Suzuki K. J. Am. Chem. Soc. 2008; 130: 1550
- 17b Nepomnyashchii AB, Cho S, Rossky PJ, Bard AJ. J. Am. Chem. Soc. 2010; 132: 17550
- 17c Bañuelos J, Martín V, Gómez-Durán CFA, Arroyo Córdoba IJ, Peña-Cabrera E, García-Moreno I, Costela Á, Pérez-Ojeda ME, Arbeloa T, López Arbeloa I. Chem. Eur. J. 2011; 17: 7261
- 18a Killoran J, Allen L, Gallagher JF, Gallagher WM, OʼShea DF. Chem. Commun. 2002; 1862
- 18b Gorman A, Killoran J, OʼShea C, Kenna T, Gallagher WM, OʼShea DF. J. Am. Chem. Soc. 2004; 126: 10619
- 18c Hall MJ, McDonnell SO, Killoran J, OʼShea DF. J. Org. Chem. 2005; 70: 5571
- 18d Zhao W, Carreira EM. Angew. Chem. Int. Ed. 2005; 44: 1677
- 18e Zhao W, Carreira EM. Chem. Eur. J. 2006; 12: 7254
- 19 Sun Y-Q, Liu J, Lv X, Liu Y, Zhao Y, Guo W. Angew. Chem. Int. Ed. 2012; 51: 7634
- 20 Patalag LJ, Jones PG, Werz DB. Chem. Eur. J. 2017; 23: 15903
- 21 Freese T, Patalag LJ, Merz JL, Jones PG, Werz DB. J. Org. Chem. 2021; 86: 3089
- 22 Le Guennic B, Scalmani G, Frisch MJ, Laurent AD, Jacquemin D. Phys. Chem. Chem. Phys. 2017; 19: 10554
- 23 Englman R, Jortner J. Mol. Phys. 1970; 18: 145
- 24 Okala Amombo GM, Flögel O, Kord Daoroun Kalai S, Schoder S, Warzok U, Reissig H-U. Eur. J. Org. Chem. 2017; 2017: 1965
- 25 Patalag LJ, Loch M, Jones PG, Werz DB. J. Org. Chem. 2019; 84: 7804
- 26 Umezawa K, Matsui A, Nakamura Y, Citterio D, Suzuki K. Chem. Eur. J. 2009; 15: 1096
- 27 Liu S, Xu W, Li X, Pang D-W, Xiong H. ACS Nano 2022; 16: 17424