Subscribe to RSS
DOI: 10.1055/a-2490-7056
Corneal Stress Distribution Using the Procedure of Goldmann Applanation Tonometry, as Tested on a Human Cornea Model
Hornhautspannungsverteilung mit dem Goldmann-Applanationstonometrieverfahren, getestet an einem menschlichen Hornhautmodell
Abstract
Objective To assess the effect of corneal thinning and changes in intraocular pressure (IOP) on the distribution of corneal stress induced by Goldmann applanation tonometry (GAT).
Methods A 2D model of a human cornea was created using a computer-aided design and finite element analysis software, employing previously reported corneal biomechanical properties. The GAT procedure was simulated, and the magnitude and distribution of stress in the corneal stroma were obtained for several corneal thicknesses, stiffnesses, and IOP.
Results A significant increase in stress was found in the outer and inner layers of the central cornea and in the inner layers of the surrounding central region. The maximal stress value was observed in the central outer layers when the stiffness was doubled, as in our theoretical baseline cornea (125.16 kPa). Minimal stress was observed in the central inner layers for a central corneal thickness of 300 µm (28.17 kPa). The thickness and stiffness of the cornea significantly influenced the magnitude of the stress, whereas the stress distribution in the cornea did not show significant changes. The change in IOP did not induce significant changes in either stress magnitude or stress distribution.
Conclusions The changes and distribution of corneal stress when a GAT procedure is performed support the idea that variations in corneal thickness and stiffness induce changes in corneal biomechanics that may be relevant for IOP readings. These findings are relevant for assessing IOP in corneas that have undergone surgical procedures or have diseases that alter their layers.
Zusammenfassung
Ziel Beurteilung der Auswirkung von Hornhautverdünnung und Veränderungen des Augeninnendrucks (IOD) auf die Verteilung der durch Goldmann Applanationstonometrie (GAT) induzierten Hornhautbelastung.
Methoden Ein 2D-Modell einer menschlichen Hornhaut wurde mithilfe einer Software für computergestütztes Design und Finite-Elemente-Analyse erstellt, wobei bereits gemessene biomechanische Eigenschaften der Hornhaut verwendet wurden. Das GAT-Verfahren wurde simuliert und das Ausmaß und die Verteilung der Spannung im Hornhautstroma für verschiedene Hornhautdicken, steifigkeiten und den Augeninnendruck ermittelt.
Ergebnisse Es wurde ein signifikanter Spannungsanstieg in den äußeren und inneren Schichten der zentralen Hornhaut sowie in den inneren Schichten der umgebenden zentralen Region festgestellt. Der maximale Spannungswert wurde in den zentralen Außenschichten beobachtet, wenn die Steifigkeit verdoppelt wurde, wie in unserer theoretischen Ausgangshornhaut (125,16 kPa). Bei einer zentralen Hornhautdicke von 300 µm (28,17 kPa) wurde eine minimale Spannung in den zentralen Innenschichten beobachtet. Die Dicke und Steifheit der Hornhaut beeinflussten das Ausmaß der Belastung maßgeblich, wohingegen die Spannungsverteilung in der Hornhaut keine signifikanten Veränderungen aufwies. Die Veränderung des Augeninnendrucks führte weder zu signifikanten Veränderungen der Belastungsgröße noch der Belastungsverteilung.
Schlussfolgerungen Die Veränderungen und die Verteilung der Hornhautbelastung bei der Durchführung eines GAT-Eingriffs stützen die Annahme, dass Variationen der Hornhautdicke und -steifheit Veränderungen in der Hornhautbiomechanik hervorrufen, die für die IOD-Messwerte relevant sein können. Diese Ergebnisse sind relevant für die Beurteilung des Augeninnendrucks bei Hornhäuten, die chirurgischen Eingriffen unterzogen wurden oder deren Schichten durch Krankenheiten verändert wurden.
Keywords
Goldmann applanation tonometry - corneal stress - glaucoma - corneal biomechanics - finite element analysisSchlüsselwörter
Goldmann-Applanationstonometrie - Hornhautspannung - Glaukom - korneale Biomechanik - Finite-Elemente-AnalysePublication History
Received: 22 May 2024
Accepted: 27 November 2024
Accepted Manuscript online:
27 November 2024
Article published online:
21 January 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Goldmann H, Schmidt T. Über Applanationstonometrie. Ophthalmologica 1957; 134: 221-242
- 2 Lu SH, Chong IT, Leung SYY. et al. Characterization of corneal biomechanical properties and determination of natural intra-ocular pressure using CID-GAT. Trans Vis Sci Tech 2019; 8: 10
- 3 Ko MW, Leung LK, Lam DC. et al. Characterization of corneal tangent modulus in vivo . Acta Ophthalmol 2013; 91: e263-e269
- 4 Hoffmann EM, Aghayeva F, Wagner FM. et al. Intraocular Pressure and Its Relation to Ocular Geometry: Results From the Gutenberg Health Study. Invest Ophthalmol Vis Sci 2022; 63: 40
- 5 Shimmyo M, Ross AJ, Moy A. et al. Intraocular pressure, Goldmann applanation tension, corneal thickness, and corneal curvature in Caucasians, Asians, Hispanics, and African Americans. Am J Ophthalmol 2003; 136: 603-613
- 6 Zhang Y, Bian A, Hang Q. et al. Corneal biomechanical properties of various types of glaucoma and their impact on measurement of intraocular pressure. Ophthalmic Res 2023; 66: 742-749
- 7 Hamilton KE, Pye DC. Youngʼs modulus in normal corneas and the effect on applanation tonometry. Optom Vis Sci 2008; 85: 445-450
- 8 De Bernardo M, Cembalo G, Rosa N. Reliability of Intraocular Pressure Measurement by Goldmann Applanation Tonometry After Refractive Surgery: A Review of Different Correction Formulas. Clin Ophthalmol 2020; 14: 2783-2788
- 9 Shipper I, Senn P, Oyo-Szerenyi K. et al. Central and peripheral pressure measurements with the Goldmann tonometer and Tono-Pen after photorefractive keratectomy for myopia. J Cataract Refract Surg 2000; 26: 929-933
- 10 Herber R, Francis M, Spoerl E. et al. Comparison of waveform-derived corneal stiffness and stress-strain extensometry-derived corneal stiffness using different cross-linking irradiances: an experimental study with air-puff applanation of ex vivo porcine eyes. Graefes Arch Clin Exp Ophthalmol 2020; 258: 2173-2184
- 11 Padmanabhan P, Elsheikh A. Keratoconus: A Biomechanical Perspective. Curr Eye Res 2003; 48: 121-129
- 12 Song Y, Wu D, Shen M. et al. Measuring human corneal stromal biomechanical properties using tensile testing combined with optical coherence tomography. Front Bioeng Biotechnol 2022; 10: 882392
- 13 He M, Wang W, Ding H. et al. Corneal biomechanical properties in high myopia measured by dynamic Scheimpflug imaging technology. Optom Vis Sci 2017; 94: 1074-1080
- 14 Du Y, Zhang Y, Zhang Y. et al. Analysis of potential impact factors of corneal biomechanics in myopia. BMC Ophthalmol 2023; 23: 143
- 15 Kilintworth GK. Corneal dystrophies. Orphanet J Rare Dis 2009; 4: 7
- 16 Lin ZN, Chen J, Cui HP. Characteristics of corneal dystrophies: a review from clinical, histological and genetic perspectives. Int J Ophthalmol 2016; 9: 904-913
- 17 Kamiya K, Shimizu K, Ohmoto F. The changes in corneal biomechanical parameters after phototherapeutic keratectomy in eyes with granular corneal dystrophy. Eye (Lond) 2009; 23: 1790-1795
- 18 Wu M, Han J, Wang X. et al. The alterations of corneal biomechanics in adult patients with corneal dystrophy. Eye (Lond) 2023; 37: 492-500
- 19 Leccisotti A, Fields SV, Moore J. et al. Changes in ocular biomechanics after femtosecond laser creation of a laser in situ keratomileusis flap. J Cataract Refract Surg 2016; 42: 127-131
- 20 Kruse-Hansen F, Ehlers N. Elevated tonometry readings caused by thick cornea. Acta Ophthalmol (Copenh) 1971; 49: 775-778
- 21 Ehlers N, Kruse-Hansen F. Central corneal thickness in low-tension glaucoma. Acta Ophthalmol (Copenh) 1974; 52: 740-746
- 22 Esporcatte LPG, Salomao MQ, Lopes BT. et al. Biomechanical diagnostics of the cornea. Eye Vis (Lond) 2020; 7: 9
- 23 Ruberti JW, Roy AS, Roberts C. Corneal biomechanics and biomaterials. Annu Rev Biomed Eng 2011; 13: 269-295
- 24 Tanveer W, Ridwan-Pramana A, Molinero-Mourelle P. et al. Systematic review of clinical applications of CAD/CAM technology for craniofacial implants placement and manufacturing of orbital prostheses. Int J Environ Res Public Health 2021; 18: 11349
- 25 Lee HP, Zhuang H. Biomechanical study on the edge shapes for penetrating keratoplasty. Comput Methods Biomech Biomed Engin 2012; 15: 1071-1079
- 26 Uchio E, Ohno S, Kudoh J. et al. Simulation model of an eyeball based on finite element analysis on a supercomputer. Br J Ophthalmol 1999; 83: 1106-1111
- 27 Rüfer F, Schröder A, Erb C. White-to-white corneal diameter: normal values in healthy humans obtained with the Orbscan II topography system. Cornea 2005; 24: 259-261
- 28 Gefen A, Shalom R, Elad D. et al. Biomechanical analysis of the keratoconic corneas. J Mech Behav Biomed Mater 2009; 2: 224-236
- 29 Crouch JR, Merriam JC, Crouch ER. Finite element model of cornea deformation. In: Duncan JS, Gerig G. eds. Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2005. Berlin: Springer; 2005: 591-598
- 30 von Mises R. Mechanik der festen Körper im plastisch deformablen Zustand. Göttin Nachr Math Phys 1913; 1: 582-592
- 31 Vito RP, Shin TJ, McCarey BE. A mechanical model of the cornea: the effects of physiological and surgical factors on radial keratotomy surgery. Refract Corneal Surg 1989; 5: 82-88
- 32 Ma J, Wang Y, Wei P. et al. Biomechanics and structure of the cornea: implications and association with corneal disorders. Surv Ophthalmol 2018; 63: 851-861
- 33 Winkler M, Chai D, Kriling S. Nonlinear optical macroscopic assessment of 3-D corneal collagen organization and axial biomechanics. Invest Ophthalmol Vis Sci 2011; 52: 8818-8826
- 34 Elsheikh A, Alhasso D, Rama P. Assessment of the epitheliumʼs contribution to corneal biomechanics. Exp Eye Res 2008; 86: 445-451
- 35 Seiler T, Matallana M, Sendler S. et al. Does Bowmanʼs layer determine the biomechanical properties of the cornea?. Refract Corneal Surg 1992; 8: 139-142
- 36 Jue B, Maurice DM. The mechanical properties of the rabbit and human cornea. J Biomech 1986; 19: 847-853
- 37 Tabuchi H, Kiuchi Y, Ohsugi H. et al. Effects of corneal thickness and axial length on intraocular pressure and ocular pulse amplitude before and after cataract surgery. Can J Ophthalmol 2011; 46: 242-246
- 38 Rosa N, Cennamo G, Breve MA. et al. Goldmann applanation tonometry after myopic photorefractive keratectomy. Acta Ophthalmol Scand 1998; 76: 550-554
- 39 Andreanos K, Koutsandrea C, Papaconstantinou D. et al. Comparison of Goldmann applanation tonometry and Pascal dynamic contour tonometry in relation to central corneal thickness and corneal curvature. Clin Ophthalmol 2016; 10: 2477-2484
- 40 Alvani A, Hashemi H, Pakravan M. et al. Dynamic biomechanics in different cell layers: in keratoconus and normal eyes. Ophthalmic Physiol Opt 2021; 41: 414-423
- 41 Maurice DM, Giardini AA. A simple optical apparatus for measuring the corneal thickness, and the average thickness of the human cornea. Br J Ophthalmol 1951; 35: 169-177
- 42 Sng CCA, Ang M, Barton K. Central corneal thickness in glaucoma. Curr Opin Ophthalmol 2017; 28: 120-126
- 43 Javed A, Arshad MO, Nasir J. et al. Comparison between the values of intra-ocular pressure measured by Goldmann applanation tonometer and Air-Puff non-contact tonometer and their relationship with central corneal thickness. J Pak Med Assoc 2022; 72: 149-151
- 44 Eysteinsson T, Jonasson F, Sasaki H. et al. Central corneal thickness, radius of the corneal curvature and intraocular pressure in normal subjects using non-contact techniques: Reykjavik Eye Study. Acta Ophthalmol Scand 2002; 80: 11-15
- 45 McCafferty S, Levine J, Schwiegerling J. et al. Goldmann applanation tonometry error relative to true intracameral intraocular pressure in vitro and in vivo . BMC Ophthalmol 2017; 17: 215
- 46 Mardelli PG, Piebenga LW, Whitacre MM. et al. The effect of excimer laser photorefractive keratectomy on intraocular pressure measurements using the Goldmann applanation tonometer. Ophthalmology 1997; 104: 945-948
- 47 Liu J, Roberts CJ. Influence of corneal biomechanical properties on intraocular pressure measurement: quantitative analysis. J Cataract Refract Surg 2005; 31: 146-155
- 48 Francis BA, Hsieh A, Lai MY. et al. Effects of corneal thickness, corneal curvature, and intraocular pressure level on Goldmann Applanation Tonometry and Dynamic Contour Tonometry. Ophthalmology 2007; 114: 20-26
- 49 Dielemans I, Vingerling JR, Hofman A. et al. Reliability of intraocular pressure measurements with the Goldmann applanation tonometer in epidemiological studies. Graefes Arch Clin Exp Ophthalmol 1994; 232: 141-144
- 50 Pinsky PM, Datye DV. A microstructurally-based finite element model of the incised human cornea. J Biomech 1991; 24: 907-922
- 51 Xu Y, Ye Y, Chong IT. et al. A novel indentation assessment to measure corneal biomechanical properties in glaucoma and ocular hypertension. Trans Vis Sci Technol 2021; 10: 36
- 52 Itoop SM, Jaccard N, Lanouette G. et al. The role of artificial intelligence in the diagnosis and management of glaucoma. J Glaucoma 2022; 31: 137-146
- 53 Zhen C, Johnson TV, Garg A. et al. Artificial intelligence in glaucoma. Curr Opin Ophthalmol 2019; 30: 97-103
- 54 Lee J, Choi HJ. Accuracy and reliability of measurements obtained with a noncontact tono-pachymeter for clinical use in mass screening. Sci Rep 2021; 11: 8900
- 55 Terai N, Raiskup F, Haustein M. et al. Identification of biomechanical properties of the cornea. Curr Eye Res 2012; 37: 553-562