RSS-Feed abonnieren
DOI: 10.1055/a-2558-8721
Glaukomdiagnostik des Sehnervenkopfes mittels optischer Kohärenztomografie – Bedeutung der Bruch-Membran-Öffnung und abgeleiteter OCT-Parameter
Artikel in mehreren Sprachen: English | deutschAutoren
Zusammenfassung
Hintergrund Mit Einführung der optischen Kohärenztomografie (OCT) in die Glaukombildgebung kann das neuroretinale Gewebe von Netzhaut und Sehnervenkopf an unterschiedlichen Messpunkten deutlich genauer als mit vorigen Bildgebungstechniken vermessen und quantifiziert werden. Neben makulären Parametern wie der makulären und peripapillären Dicke der retinalen Nervenfasersicht und der makulären Ganglienzellschichtdicke wurden auch papillennahe Parameter basierend auf der Bruch-Membran-Öffnung (BMO) definiert und hinsichtlich ihrer Eignung zur Glaukomdiagnostik untersucht. Die vorliegende Übersicht stellt Vor- und Nachteile dieser Parameter in der Glaukomdiagnostik dar.
Material und Methoden Zusammenfassung der Literatur aus PubMed sowie relevanter Leitlinien und Stellungnahmen.
Ergebnisse und Schlussfolgerung Die minimale Randsaumweite der Bruch-Membran-Öffnung (BMO-MRW) ist der am häufigsten verwendete OCT-Parameter zur Vermessung des neuroretinalen Randsaums am Sehnervenkopf. Daneben existieren auch Flächenparameter. Im Vergleich zur peripapillären RNFL-Dicke sowie zu makulären Parametern weist die BMO-MRW eine gleichwertige bis überlegene Sensitivität in der Glaukomerkennung auf. In der longitudinalen Betrachtung führen Effekte wie Änderungen des Augendruckniveaus zu Fluktuationen in der BMO-MRW, was den Nutzen dieses Parameters bez. der morphometrischen Progressionsanalyse einschränkt. Hier konnte in zahlreichen Studien gezeigt werden, dass die peripapilläre Nervenfaserschichtdicke (pRNFL) besser zur Progressionsanalyse geeignet ist. Die Überprüfung der automatischen Segmentierung der OCT-Aufnahmen ist für alle OCT-Parameter in der Glaukomdiagnostik relevant.
Publikationsverlauf
Eingereicht: 12. Oktober 2024
Angenommen: 23. Januar 2025
Artikel online veröffentlicht:
24. Juli 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Kellner U, Kellner S, Golshahi A. et al. Spectral-Domain optische Kohärenztomografie der Makula: klinische Beurteilung. Klin Monbl Augenheilkd 2015; 232: 1113-1131
- 2 Chen TC. Spectral domain optical coherence tomography in glaucoma: qualitative and quantitative analysis of the optic nerve head and retinal nerve fiber layer (an AOS thesis). Trans Am Ophthalmol Soc 2009; 107: 254-281
- 3 Gamulescu MA, Helbig H. OCT in der Makuladiagnostik – Möglichkeiten und Grenzen. Klin Monbl Augenheilkd 2011; 228: 599-606
- 4 Povazay B, Hofer B, Hermann B. et al. Minimum distance mapping using three-dimensional optical coherence tomography for glaucoma diagnosis. J Biomed Opt 2007; 12: 041204
- 5 Abràmoff MD, Lee K, Niemeijer M. et al. Automated segmentation of the cup and rim from spectral domain OCT of the optic nerve head. Invest Ophthalmol Vis Sci 2009; 50: 5778-5784
- 6 Mwanza JC, Budenz DL. Optical coherence tomography platforms and parameters for glaucoma diagnosis and progression. Curr Opin Ophthalmol 2016; 27: 102-110
- 7 Chauhan BC, Burgoyne CF. From clinical examination of the optic disc to clinical assessment of the optic nerve head: a paradigm change. Am J Ophthalmol 2013; 156: 218-227.e2
- 8 Chauhan BC, OʼLeary N, AlMobarak FA. et al. Enhanced detection of open-angle glaucoma with an anatomically accurate optical coherence tomography-derived neuroretinal rim parameter. Ophthalmology 2013; 120: 535-543
- 9 Bowd C, Zangwill LM, Medeiros FA. et al. Structure-function relationships using confocal scanning laser ophthalmoscopy, optical coherence tomography, and scanning laser polarimetry. Invest Ophthalmol Vis Sci 2006; 47: 2889-2895
- 10 Reis AS, OʼLeary N, Yang H. et al. Influence of clinically invisible, but optical coherence tomography detected, optic disc margin anatomy on neuroretinal rim evaluation. Invest Ophthalmol Vis Sci 2012; 53: 1852-1860
- 11 Gardiner SK, Ren R, Yang H. et al. A method to estimate the amount of neuroretinal rim tissue in glaucoma: comparison with current methods for measuring rim area. Am J Ophthalmol 2014; 157: 540-549.e1–2
- 12 Danthurebandara VM, Sharpe GP, Hutchison DM. et al. Enhanced structure-function relationship in glaucoma with an anatomically and geometrically accurate neuroretinal rim measurement. Invest Ophthalmol Vis Sci 2014; 56: 98-105
- 13 Chauhan BC, Danthurebandara VM, Sharpe GP. et al. Bruchʼs Membrane Opening Minimum Rim Width and Retinal Nerve Fiber Layer Thickness in a Normal White Population: A Multicenter Study. Ophthalmology 2015; 122: 1786-1794
- 14 Enders P, Schaub F, Adler W. et al. The use of Bruchʼs membrane opening-based optical coherence tomography of the optic nerve head for glaucoma detection in microdiscs. Br J Ophthalmol 2017; 101: 530-535
- 15 Toshev AP, Lamparter J, Pfeiffer N. et al. Bruchʼs Membrane Opening-Minimum Rim Width Assessment With Spectral-Domain Optical Coherence Tomography Performs Better Than Confocal Scanning Laser Ophthalmoscopy in Discriminating Early Glaucoma Patients From Control Subjects. J Glaucoma 2017; 26: 27-33
- 16 Enders P, Adler W, Kiessling D. et al. Evaluation of two-dimensional Bruchʼs membrane opening minimum rim area for glaucoma diagnostics in a large patient cohort. Acta Ophthalmol 2019; 97: 60-67
- 17 Sun A, Tsamis E, Eguia MD. et al. Global optical coherence tomography measures for detecting the progression of glaucoma have fundamental flaws. Eye (Lond) 2021; 35: 2973-2982
- 18 El-Nimri NW, Moghimi S, Nishida T. et al. Racial Differences in Detection of Glaucoma Using Retinal Nerve Fiber Layer Thickness and Bruch Membrane Opening Minimum Rim Width. Am J Ophthalmol 2023; 246: 223-235
- 19 Scheuble P, Petrak M, Brinkmann CK. Glaucoma Diagnostic Testing: The Influence of Optic Disc Size. Klin Monbl Augenheilkd 2022; 239: 1043-1051
- 20 Enders P, Schaub F, Adler W. et al. Medscape. Bruchʼs membrane opening-based optical coherence tomography of the optic nerve head: a useful diagnostic tool to detect glaucoma in macrodiscs. Eye (Lond) 2018; 32: 314-323
- 21 Enders P, Adler W, Schaub F. et al. Novel Bruchʼs Membrane Opening Minimum Rim Area Equalizes Disc Size Dependency and Offers High Diagnostic Power for Glaucoma. Invest Ophthalmol Vis Sci 2016; 57: 6596-6603
- 22 Enders P, Adler W, Schaub F. et al. Optimization Strategies for Bruchʼs Membrane Opening Minimum Rim Area Calculation: Sequential versus Simultaneous Minimization. Sci Rep 2017; 7: 13874
- 23 Choi HS, Joo CW, Park SP. et al. A Decrease in Bruchʼs Membrane Opening-Minimum Rim Area Precedes Decreased Retinal Nerve Fiber Layer Thickness and Visual Field Loss in Glaucoma. J Glaucoma 2021; 30: 1033-1038
- 24 Rüfer F, Bartsch JJ, Erb C. et al. Epiretinal membrane as a source of errors during the measurement of peripapillary nerve fibre thickness using spectral-domain optical coherence tomography (SD-OCT). Graefes Arch Clin Exp Ophthalmol 2016; 254: 2017-2023
- 25 Yang H, Rees JP, Sanchez FG. et al. OCT Segmentation Errors with Bruchʼs Membrane Opening-Minimum Rim Width as Compared with Retinal Nerve Fiber Layer Thickness. Ophthalmol Glaucoma 2024; 7: 308-315
- 26 Gardiner SK, Boey PY, Yang H. et al. Structural Measurements for Monitoring Change in Glaucoma: Comparing Retinal Nerve Fiber Layer Thickness With Minimum Rim Width and Area. Invest Ophthalmol Vis Sci 2015; 56: 6886-6891
- 27 Nagarkatti-Gude N, Gardiner SK, Fortune B. et al. Optical Coherence Tomography Segmentation Errors of the Retinal Nerve Fiber Layer Persist Over Time. J Glaucoma 2019; 28: 368-374
- 28 Enders P, Bremen A, Schaub F. et al. Intraday Repeatability of Bruchʼs Membrane Opening-Based Neuroretinal Rim Measurements. Invest Ophthalmol Vis Sci 2017; 58: 5195-5200
- 29 Gietzelt C, Lemke J, Schaub F. et al. Structural Reversal of Disc Cupping After Trabeculectomy Alters Bruch Membrane Opening-Based Parameters to Assess Neuroretinal Rim. Am J Ophthalmol 2018; 194: 143-152
- 30 Koenig SF, Hirneiss CW. Changes of Neuroretinal Rim and Retinal Nerve Fiber Layer Thickness Assessed by Optical Coherence Tomography After Filtration Surgery in Glaucomatous Eyes. Clin Ophthalmol 2021; 15: 2335-2344
- 31 Sanchez FG, Sanders DS, Moon JJ. et al. Effect of Trabeculectomy on OCT Measurements of the Optic Nerve Head Neuroretinal Rim Tissue. Ophthalmol Glaucoma 2020; 3: 32-39
- 32 Waisbourd M, Ahmed OM, Molineaux J. et al. Reversible structural and functional changes after intraocular pressure reduction in patients with glaucoma. Graefes Arch Clin Exp Ophthalmol 2016; 254: 1159-1166
- 33 Gietzelt C, Lüke JN, Adler W. et al. Short-term changes in Bruchʼs membrane opening-based morphometrics during the first week after trabeculectomy. Graefes Arch Clin Exp Ophthalmol 2022; 260: 3321-3329
- 34 Nouri-Mahdavi K, Fatehi N, Caprioli J. Longitudinal Macular Structure-Function Relationships in Glaucoma and Their Sources of Variability. Am J Ophthalmol 2019; 207: 18-36
- 35 Reznicek L, Burzer S, Laubichler A. et al. Structure-function relationship comparison between retinal nerve fibre layer and Bruchʼs membrane opening-minimum rim width in glaucoma. Int J Ophthalmol 2017; 10: 1534-1538
- 36 Li R, Wang X, Wei Y. et al. Structure-function relationship between Bruchʼs membrane opening-minimum rim width and perimetry in open-angle glaucoma subtypes. Graefes Arch Clin Exp Ophthalmol 2020; 258: 595-605
- 37 Vianna JR, Danthurebandara VM, Sharpe GP. et al. Importance of Normal Aging in Estimating the Rate of Glaucomatous Neuroretinal Rim and Retinal Nerve Fiber Layer Loss. Ophthalmology 2015; 122: 2392-2398
- 38 Mardin C. OCT-Diagnostik beim Glaukom: Tipps & Tricks. Klin Monbl Augenheilkd 2020; 237: 539-551
- 39 López-de-Eguileta A, López-García S, Lage C. et al. The retinal ganglion cell layer reflects neurodegenerative changes in cognitively unimpaired individuals. Alzheimers Res Ther 2022; 14: 57
