Synlett
DOI: 10.1055/a-2595-8088
letter
Small Molecules in Medicinal Chemistry

Exploring Tetrahydroquinoline Derivatives: A New Frontier in Cancer Treatment

Suman K. Shaw
a   Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India
,
Rajdeep Dey
a   Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India
,
Ruchi Yadav
a   Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India
,
Aliasgar Baldiwala
b   Institute of Pharmacy, Nirma University, Ahmedabad 382481, India
,
Manan Patel
b   Institute of Pharmacy, Nirma University, Ahmedabad 382481, India
,
Bhumika D. Patel
a   Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India
,
Hardik G. Bhatt
a   Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India
,
Gopal Natesan
a   Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India
,
Abhishek Jha
c   Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
,
a   Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India
› Institutsangaben

This work was supported by the Minor Research Project IPNU/2024-26/144 funded by Nirma University, Ahmedabad, India.


Abstract

Tetrahydroquinoline derivatives are emerging as promising anticancer agents due to their versatile biological activities. In this study, we designed, synthesized, and evaluated six novel tetrahydroquinoline derivatives with anticancer potential. The compounds were synthesized by nitration, benzoylation, and reduction, achieving high yields and structural diversity. Molecular-docking studies on the mTOR protein (PDB ID: 4JT6) revealed strong binding affinities, with key interactions at active-site residues. Molecular dynamics simulations in GROMACS (50 ns) confirmed the stability of the compound–protein complexes. In vitro cytotoxicity assays against A549, MDA-MB-231, and MCF-7 cancer cell lines showed potent activities, with one product displaying an IC50 o

Supporting Information



Publikationsverlauf

Eingereicht: 27. Februar 2025

Angenommen nach Revision: 28. April 2025

Accepted Manuscript online:
28. April 2025

Artikel online veröffentlicht:
12. Juni 2025

© 2025. Thieme. All rights reserved

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Noronha V, Budukh A, Chaturvedi P, Anne S, Punjabi A, Bhaskar M, Sahoo TP, Menon N, Shah M, Batra U, Nathany S, Kumar R, Shetty O, Ghodke TP, Mahajan A, Chakrabarty N, Hait S, Tripathi SC, Chougule A, Chandrani P, Tripathi VK, Jiwnani S, Tibdewal A, Maheshwari G, Kothari R, Patil VM, Bhat RS, Khanderia M, Mahajan V, Prakash R, Sharma S, Jabbar AA, Yadav BK, Uddin AF. M. K, Dutt A, Prabhash K. Lancet Reg. Health Southeast Asia 2024; 27: 100430
  • 2 Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, Jemal A. Ca-Cancer J. Clin. 2024; 74: 229
  • 3 Dey R, Vishwakarma K, Patel B, Vyas VK, Bhatt H. ChemistrySelect 2024; 9: e202404444
  • 4 Guo Q, Liu L, Chen Z, Fan Y, Zhou Y, Yuan Z, Zhang W. Front. Oncol. 2022; 12: 945102
  • 5 Vishwakarma K, Dey R, Bhatt H. Eur. J. Med. Chem. 2023; 249: 115121
  • 6 Shaik R, Malik MS, Basavaraju S, Qurban J, Al-Subhi FM. M, Badampudi S, Peddapaka J, Shaik A, Abd-El-Aziz A, Moussa Z, Ahmed SA. Daru J. Pharm. Sci. 2024; 33: 4
  • 7 Alkhathami AG, Pallathadka H, Shah S, Ganesan S, Sharma A, Devi S, Mustafa YF, Alasheqi MQ, Kadhim AJ, Zwamel AH. Med. Oncol. 2024; 42: 28
  • 8 Win T, Kharofa J, Frankart AJ. Support Care Cancer 2025; 33: 11
  • 9 Peng Y, Li D, Wampfler J, Luo Y.-H, Kumar A, Gu Z, Kosuru N, Yu NY, Wang Z, Leventakos K, Ernani V, Yang P. Oncol. Rep. 2024; 53: 25
  • 10 Thaker A, Patel S, Dey R, Shaw S, Patel B, Bhatt H, Chaube UJ. Synlett 2024; in press
  • 11 Faheem Faheem, Karan Kumar B, Chandra Sekhar KV. G, Chander S, Kunjiappan S, Murugesan S. RSC Adv. 2021; 11: 12254
  • 12 Sridharan V, Suryavanshi PA, Menéndez JC. Chem. Rev. 2011; 111: 7157
  • 13 Zhao Y.-Q, Li X, Guo H.-Y, Shen Q.-K, Quan Z.-S, Luan T. Molecules 2023; 28: 6478
  • 14 Błaszczyk A, Skolimowski J. Chem.-Biol. Interact. 2006; 162: 70
  • 15 Wu J, Tan X, Wu W, Jiang H. Nat. Commun. 2024; 15: 6776
  • 16 Domingo LR, Aurell MJ, Sáez JA, Mekelleche SM. RSC Adv. 2014; 4: 25268
  • 17 Vielhaber T, Heizinger C, Topf C. J. Catal. 2021; 404: 451
  • 18 Magyar A, Wölfling J, Kubas M, Cuesta Seijo JA, Sevvana M, Herbst-Irmer R, Forgó P, Schneider G. Steroids 2004; 69: 301
  • 19 Chaube U, Dey R, Shaw S, Patel BD, Bhatt HG. Future Med. Chem. 2022; 14: 1789
  • 20 Ryczkowska M, Maciejewska N, Olszewski M, Witkowska M, Makowiec S. Sci. Rep. 2022; 12: 9985
  • 21 Fathy U, Azzam MA, Mahdy F, El-Maghraby S, Allam RM. J. Heterocycl. Chem. 2020; 57: 2108
  • 22 Faheem, Karan Kumar B, Chandra Sekhar KV. G, Chander S, Kunjiappan S, Murugesan S. Expert Opin. Drug Discovery 2021; 16: 1119
  • 23 Chaube U, Bhatt H. Mol. Diversity 2017; 21: 741
  • 24 Chaube UJ, Rawal R, Jha AB, Variya B, Bhatt HG. Bioorg. Chem. 2021; 106: 104501
  • 25 He G, Chen C, Wang T, Wu F, Ouyang L, Xiang M, Jiang Q, Huang W, Peng C. Drug Des. Devel. Theor. 2014; 8: 1195
  • 26 Dey R, Shaw S, Bhatt H, Patel B, Yadav R, Chaube U. J. Mol. Struct. 2024; 1318: 139330
  • 27 Yang L, Chiu K. Tetrahedron Lett. 1997; 38: 7307
  • 28 Njoroge FG, Vibulbhan B, Pinto P, Chan T.-M, Osterman R, Remiszewski S, Del Rosario J, Doll R, Girijavallabhan V, Ganguly AK. J. Org. Chem. 1998; 63: 445
  • 29 Ashenhurst J.; Electrophilic Aromatic Substitutions (2): Nitration and Sulfonation; Master Organic Chemistry LLC: Nashville, 2025; accessed May 19, 2025: https://www.masterorganicchemistry.com/2018/04/30/electrophilic-aromatic-substitutions-2-nitration-and-sulfonation
  • 30 Román T, Acosta G, Cárdenas C, de la Torre BG, Guzmán F, Albericio F. Methods Protoc. 2023; 6: 110
  • 31 Egelund PH. G, Jadhav S, Martin V, Johansson Castro H, Richner F, Le Quement ST, Dettner F, Lechner C, Schoenleber R, Sejer Pedersen D. ACS Sustainable Chem. Eng. 2021; 9: 14202
  • 32 Jarret RM, Keil N, Allen S, Cannon L, Coughlan J, Cusumano L, Nolan B. J. Chem. Educ. 1989; 66: 1056
  • 33 Denton EH, Stepanović O, Morandi B. Chem. Eur. J. 2024; 30: e202401852
  • 34 Yu M, Ouyang D, Wang L, Liu Y.-N. Molecules 2024; 29: 4353
  • 35 Dasgupta HR, Mukherjee S, Ghosh P. Tetrahedron Lett. 2019; 60: 151028
  • 36 Welch J. In Encyclopedia of Physical Science and Technology, 3rd ed. Meyers RA. Academic Press; San Diego: 2001: 497
  • 37 Verma P, Xiang LZ, Chaube U, Natesan G. ChemistrySelect 2024; 9: e202403009
  • 38 Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E. SoftwareX 2015; 1–2: 19
  • 39 Páll S, Abraham MJ, Kutzner C, Hess B, Lindahl E. In International Conference on Exascale Applications and Software, EASC 2014, Stockholm, Sweden, April 23, 2014, Revised Selected Papers. Markidis S, Laure E. Springer eBooks; Cham: 2015: 3
  • 40 3,5-Difluoro-N-[1-(tetrahydro-2H-pyran-4-ylcarbonyl)-1,2,3,4-tetrahydroquinolin-7-yl]benzamide (13a); Typical Procedure Me3NH (4.9 mmol, 0.46 mL) was added dropwise to a solution of compound 11a (1.7 mmol, 0.5 g) in CH2Cl2, and the mixture was stirred for 30 min at r.t. 3,5-Difluorobenzoyl chloride (1.6 mmol, 0.28 g) was added, and the resulting mixture was stirred for 1 h, then poured onto crushed ice. The mixture was extracted with CH2Cl2, and the extracts were dried (Na2SO4), concentrated, and purified by column chromatography to give a light-yellow solid; yield: 39.46%; mp 206–208 °C; HPLC purity: 99.45%. 1H NMR (400 MHz, CDCl3): δ = 1.68–1.65 (d, J = 12 Hz, 4 H, CH2), 1.99–1.92 (m, 4 H, CH2), 2.75–2.71 (t, J = 12 Hz, 2 H, CH2), 3.28 (s, 1 H, CH), 3.44–3.27 (t, J = 12 Hz, 2 H, CH2), 4.0–3.97 (d, J = 12 Hz, 2 H, CH2), 7.045–7.00 (t, J = 8 Hz, 2 H, ArCH); 7.18–7.13 (d, J = 8 Hz, 1 H, ArCH), 7.48–7.41 (m, 1 H, ArCH), 7.83 (s, 1 H, ArCH), 7.86 (s, 1 H, NH–CO). 13C NMR (100 MHz, CDCl3): δ = 24.16, 26.32, 29.43, 29.66, 31.40, 38.60, 42.98, 67.05, 112.0, 112.25, 114.21, 114.41, 114.61, 116.20, 128.87, 132.00, 132.11, 135.43, 139.33, 158.65, 161.1, 174.86. MS (EI): m/z [M + H]+ calcd for C22H23F2N2O3: 400.43; found: 401.49.