Subscribe to RSS
DOI: 10.1055/a-2644-4687
Quantitative Analysis of Choroidal Vascular Remodeling after Cataract Surgery: Correlation with Preoperative Lens Opacity Grading
Quantitative Analyse der choroidalen Gefäßumgestaltung nach Kataraktoperation: Korrelation mit der präoperativen Linsentrübung
Abstract
Background Cataract surgery has been shown to induce choroidal remodeling, but the underlying mechanisms remain poorly understood. This study investigates the relationship between preoperative lens opacity and postoperative changes in choroidal vascularity following phacoemulsification.
Methods This prospective study included 46 eyes from 46 patients undergoing routine cataract surgery. Choroidal vascularity was assessed using optical coherence tomography angiography (OCTA) before surgery and at 1, 4, and 12 weeks postoperatively. The choroidal vascularity index (CVI) was calculated using a custom computer script. Preoperative lens opacity was quantified using anterior segment optical coherence tomography (AS-OCT). Correlations between CVI changes and various surgical and anatomical parameters were analyzed.
Results The CVI decreased significantly, from 0.584 ± 0.036 preoperatively to 0.569 ± 0.037 at 12 weeks postoperatively (p = 0.003). There was a significant negative correlation between the change in CVI and preoperative lens density (r = − 0.333, p = 0.036), as well as nuclear density (r = − 0.328, p = 0.039). No significant correlations were found between CVI change and cumulative dissipated energy, phacoemulsification time, fluid usage, or intraocular pressure change.
Conclusion Cataract surgery induces a significant decrease in choroidal vascularity that persists for at least three months postoperatively. This decrease correlates with preoperative cataract density, suggesting that increased light transmission following lens replacement may lead to choroidal remodeling. Consequently, objective measurement of lens opacity may contribute to the decision-making process for timing cataract surgery; however, further studies are needed to evaluate its potential role in minimising short- and long-term complications, such as macular oedema or age-related macular degeneration.
Zusammenfassung
Hintergrund Die Kataraktoperation führt nachweislich zu einer Umgestaltung der Aderhaut, aber die zugrundeliegenden Mechanismen sind noch wenig verstanden. Diese Studie untersucht den Zusammenhang zwischen präoperativer Linsentrübung und postoperativen Veränderungen der Gefäße der Choroidea nach Phakoemulsifikation.
Methoden Diese prospektive Studie umfasste 46 Augen von 46 Patienten, die sich einer Kataraktoperation unterzogen. Die Gefäße der Choroidea wurden mittels optischer Kohärenztomographie Angiographie (OCTA) vor der Operation sowie 1, 4 und 12 Wochen postoperativ beurteilt und quantifiziert. Der choroidale Vaskularitätsindex (CVI) wurde mithilfe eines speziellen Computerskripts berechnet. Die präoperative Linsentrübung wurde mittels optischer Kohärenztomografie des vorderen Augenabschnitts (AS-OCT) quantifiziert. Korrelationen zwischen CVI-Veränderungen und verschiedenen chirurgischen und anatomischen Parametern wurden analysiert.
Ergebnisse Der CVI sank signifikant von 0,584 ± 0,036 präoperativ auf 0,569 ± 0,037 12 Wochen postoperativ (p = 0,003). Es gab eine signifikante negative Korrelation zwischen der Veränderung des CVI und der präoperativen Linsendichte (r = − 0,333, p = 0,036) sowie der Kerndichte (r = − 0,328, p = 0,039). Es wurden keine signifikanten Korrelationen zwischen CVI-Veränderung und kumulativer dissipierter Energie, Phakoemulsifikationszeit, Flüssigkeitsverbrauch oder Veränderung des Augeninnendrucks gefunden.
Schlussfolgerung Die Kataraktoperation führt zu einer signifikanten Abnahme der Gefäße der Choroidea, die mindestens 3 Monate postoperativ anhält. Diese Abnahme korreliert mit der präoperativen Kataraktdichte, was darauf hindeutet, dass eine erhöhte Lichtdurchlässigkeit nach dem Linsenaustausch zu einer Umgestaltung der Aderhaut führen kann. Folglich ist es denkbar, dass die objektive Messung der Linsentrübung als Indikator für den Zeitpunkt der Kataraktoperation dienen könnte, um mögliche langfristige Komplikationen zu minimieren.
Already known:
-
Cataract surgery is one of the most commonly performed procedures worldwide and is associated with improvements in visual acuity and quality of life, but its effects on choroidal vasculature remain debated.
-
Previous studies have shown conflicting results regarding changes in choroidal vascularity after cataract surgery, with some reporting increases, others decreases, and some no significant change, partly due to differences in imaging and analysis techniques.
-
It was unclear whether the extent of lens opacity (cataract density) directly influences postoperative changes in choroidal vascularity, and whether these changes are primarily driven by inflammation, intraocular pressure fluctuations, or altered light transmission.
Newly described:
-
This study demonstrates that cataract surgery induces a significant and persistent decrease in the choroidal vascularity index (CVI) for at least three months postoperatively.
-
The reduction in CVI correlates significantly with preoperative cataract density, as objectively measured by anterior segment OCT, suggesting a direct link between lens opacity and choroidal remodeling.
-
The findings indicate that changes in choroidal structure are more closely related to increased light transmission following lens replacement than to inflammation or intraocular pressure changes alone, highlighting the importance of considering cataract density in surgical timing and postoperative management.
Publication History
Received: 16 March 2025
Accepted: 23 June 2025
Article published online:
21 August 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Khoramnia R, Auffarth G, Łabuz G. et al. Refractive Outcomes after Cataract Surgery. Diagnostics (Basel) 2022; 12: 243
- 2 Welsch U, Kummer W, Deller T. Lehrbuch Histologie. Elsevier Health Sciences; 2022
- 3 Ćurić A, Bjeloš M, Bušić M. et al. Long-Term Functional Hyperemia after Uncomplicated Phacoemulsification: Benefits beyond Restoring Vision. Diagnostics (Basel) 2022; 12: 2449
- 4 Križanović A, Bjeloš M, Bušić M. et al. Macular perfusion analysed by optical coherence tomography angiography after uncomplicated phacoemulsification: benefits beyond restoring vision. BMC Ophthalmol 2021; 21: 71
- 5 Pilotto E, Leonardi F, Stefanon G. et al. Early retinal and choroidal OCT and OCT angiography signs of inflammation after uncomplicated cataract surgery. Br J Ophthalmol 2019; 103: 1001-1007
- 6 Chen H, Wu Z, Chen Y. et al. Short-term changes of choroidal vascular structures after phacoemulsification surgery. BMC Ophthalmol 2018; 18: 81
- 7 Yao H, Gao S, Liu X. et al. Choroidal Structural Changes Assessed with Swept-Source Optical Coherence Tomography after Cataract Surgery in Eyes with Diabetic Retinopathy. J Ophthalmol 2020; 2020: 5839837
- 8 Aumann S, Donner S, Fischer J. et al. Optical coherence tomography (OCT): principle and technical realization. High Resolution Imaging in Microscopy and Ophthalmology: New Frontiers in Biomedical Optics [Internet]. Cham: Springer; 2019: 59-85
- 9 Neerad P, Sumit M, Ashish S. et al. Adaptive local thresholding for detection of nuclei in diversity stained cytology images. In: 2011 International Conference on Communications and Signal Processing. Kerala, India: 2011: 218-220
- 10 Meiburger KM, Salvi M, Rotunno G. et al. Automatic Segmentation and Classification Methods Using Optical Coherence Tomography Angiography (OCTA): A Review and Handbook. Appl Sci 2021; 11: 9734
- 11 Mackenbrock LHB, Łabuz G, Yildirim TM. et al. Automatic Quantitative Assessment of Lens Opacities Using Two Anterior Segment Imaging Techniques: Correlation with Functional and Surgical Metrics. Diagnostics (Basel) 2022; 12: 2406
- 12 Mackenbrock LHB, Baur ID, Łabuz G. et al. Impact of Phacoemulsification Parameters on Central Retinal Thickness Change Following Cataract Surgery. Diagnostics (Basel) 2023; 13: 2856
- 13 Mackenbrock LHB, Labuz G, Baur ID. et al. Cataract Classification Systems: A Review. Klin Monbl Augenheilkd 2024; 241: 75-83
- 14 Mackenbrock LHB, Weindler JN, Labuz G. et al. Change in Subfoveal Choroidal Thickness following Cataract Surgery Imaged with Enhanced Depth Imaging Optical Coherence Tomography. Klin Monbl Augenheilkd 2023; 240: 989-996
- 15 Chu Z, Cheng Y, Zhang Q. et al. Quantification of Choriocapillaris with Phansalkar Local Thresholding: Pitfalls to Avoid. Am J Ophthalmol 2020; 213: 161-176
- 16 Pande MV, Spalton DJ, Kerr-Muir MG. et al. Postoperative inflammatory response to phacoemulsification and extracapsular cataract surgery: Aqueous flare and cells. J Cataract Refract Surg 1996; 22 (Suppl. 1) 770-774
- 17 Appolloni R, Viggiano P, Carrella ML. et al. Femto-assisted versus conventional phacoemulsification differently impact on choroid structure after surgery. Eur J Ophthalmol 2022; 32: 2194-2200
- 18 Cevher S, Aydoğdu G. How does nepafenac affect the choroidal thickness after uneventful cataract surgery?. Eur J Ophthalmol 2021; 31: 2319-2328
- 19 Olson LE, Marshall J, Rice NS. et al. Effects of ultrasound on the corneal endothelium: I. The acute lesion. Br J Ophthalmol 1978; 62: 134-144
- 20 Poley BJ, Lindstrom RL, Samuelson TW. et al. Intraocular pressure reduction after phacoemulsification with intraocular lens implantation in glaucomatous and nonglaucomatous eyes: Evaluation of a causal relationship between the natural lens and open-angle glaucoma. J Cataract Refract Surg 2009; 35: 1946-1955
- 21 Artigas JM, Felipe A, Navea A. et al. Spectral transmission of the human crystalline lens in adult and elderly persons: color and total transmission of visible light. Invest Ophthalmol Vis Sci 2012; 53: 4076-4084
- 22 Andrade Romo JS, Castanos Toral MV, Zhou DB. et al. Flavoprotein Fluorescence Changes in the Retina with Cataract Surgery. Invest Ophthalmol Vis Science 2019; 60: PB0184-PB0184
- 23 Lou L, Ostrin LA. Effects of Monocular Light Deprivation on the Diurnal Rhythms in Retinal and Choroidal Thickness. Invest Ophthalmol Vis Sci 2022; 63: 6
- 24 Xu H, Chen M, Forrester JV. et al. Cataract surgery induces retinal pro-inflammatory gene expression and protein secretion. Invest Ophthalmol Vis Sci 2011; 52: 249-255
- 25 Kumar M, Trinh M, Zhang A. et al. Age related grid-wise spatial analysis of choroidal parameters in well characterised healthy population. Sci Rep 2024; 14: 26592
- 26 Fleissig E, Cohen S, Iglicki M. et al. CHANGES IN CHOROIDAL THICKNESS IN CLINICALLY SIGNIFICANT PSEUDOPHAKIC CYSTOID MACULAR EDEMA. Retina 2018; 38: 1629-1635
- 27 Klein BEK, Howard KP, Lee KE. et al. The Relationship of Cataract and Cataract Extraction to Age-related Macular Degeneration: The Beaver Dam Eye Study. Ophthalmology 2012; 119: 1628-1633
- 28 Cugati S, Mitchell P, Rochtchina E. et al. Cataract Surgery and the 10-Year Incidence of Age-Related Maculopathy: The Blue Mountains Eye Study. Ophthalmology 2006; 113: 2020-2025
- 29 Chew EY, Sperduto RD, Milton RC. et al. Risk of Advanced Age-Related Macular Degeneration after Cataract Surgery in the Age-Related Eye Disease Study: AREDS Report 25. Ophthalmology 2009; 116: 297-303
- 30 Yiu G, Chiu SJ, Petrou PA. et al. Relationship of central choroidal thickness with age-related macular degeneration status. Am J Ophthalmol 2015; 159: 617-626
- 31 Kessler LJ, Hoffmann S, Nahm W. et al. Impact of Lens Opacity on Optical Coherence Tomography Angiography Metrics. Curr Eye Res 2023; 48: 965-972