RSS-Feed abonnieren
DOI: 10.1055/a-2661-4038
Oxidative Halogenation of Sydnones Mediated by KX–Oxone System under Mild Conditions

Abstract
A direct, straightforward, and convenient approach for the synthesis of halogenated sydnones using the potassium halide (KX)–Oxone system via oxidative halogenation is developed. Highlights of the strategy include readily available chemicals, mild reaction conditions, short reaction time, excellent yields, and aqueous medium. Additionally, the scale-up reaction of the present halogenation indicated the practical feasibility on a higher scale under mild conditions.
Publikationsverlauf
Eingereicht: 02. Juni 2025
Angenommen nach Revision: 20. Juli 2025
Accepted Manuscript online:
20. Juli 2025
Artikel online veröffentlicht:
06. August 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Abdualkader AM, Taher M, Yusoff N. Int J Pharm Pharm Sci 2017; 9: 1
- 2a Marx JA, Turnbull K. Tetrahedron Lett 1993; 34: 239
- 2b Gelvin CR, Turnbull K. Helv Chim Acta 1931; 1992: 75
- 2c Huisgen R, Grashey R, Gotthardt H, Schmidt R. Angew Chem 1962; 74: 29
- 2d Harrity JPA, Brown A, Comas-Barcelo J. Chem Eur J 2017; 23: 5228
- 2e Browne DL, Vivat JF, Plant A, Gomez-Bengoa E, Harrity JPA. J Am Chem Soc 2009; 131: 7762
- 3 Browne DL, Taylor JB, Plant A, Harrity JPA. J Org Chem 2009; 74: 396-400
- 4a Dickopp H. Chem Ber 1974; 107: 3036
- 4b Dumitrascu F, Draghici C, Dumitrescu D, Tarko L, Raileanu D. Liebigs Ann/Recueil 1997; 2613
- 4c Dumitrascu F, Mitan CI, Dumitrescu D, Draghici C, Caproiu MT. ARKIVOC 2002; 2: 80
- 4d Browne DL, Taylor JB, Plant A, Harrity JPA. J Org Chem 2010; 75: 984
- 5a Baker W, Ollis WD, Poole VD. J Chem Soc 1950; 1542
- 5b Salmanpoor S, Tajbakhsh M, Habibzadeh S, Azarifar D, Ghasemnejad-Bosra H. J Chem Res 2008; 662
- 5c Baker W, Ollis WDV, Poole D. J Chem Soc 1949; 307
- 5d Badami BV, Puranik GS. Indian J Chem 1974; 12: 671
- 5e Turnbull K, Blackburn TL, McClure DB. J Heterocycl Chem 1994; 31: 1631
- 5f Luttringer F, Pétry N, Clot E, Bantreil X, Lamaty F. Chem Eur 2025; e202400054
- 5g Ito S, Turnbull K. Synth Commun 1996; 26: 1441
- 5h Hung WJ, Tien HJ. J Chin Chem Soc 1993; 40: 637
- 5i Tien HJ, Nanaka T, Sekine T. Chem Lett 1979; 283
- 6 Azarifar D, Ghasemnejad-Bosra H. Synthesis 2006; 7: 1123
- 7 Greco CV, Mehta J. Heterocycl J R Chem 1979; 16: 1059
- 8 Tien HJ, Yeh MY, Huang CY. J Chin Chem Soc 1985; 32: 461
- 9 Nashashibi IF, Tumey JM, Owens BL, Turnbull K. Org Prep Proced Int 2017; 49: 59
- 10 Kato H, Ohta M. Bull Chem Soc Jpn 1957; 30: 210
- 11 Yashunskii VG, Fedorovich VF. Zhur Obshch Khim 1964; 34: 3075
- 12a Beal EN, Turnbull K. Synth Commun 1992; 22: 1515
- 12b Brown DC, Turnbull K. Synth Commun 2013; 43: 3233
- 13a Kajigaeshi S, Kakinami T, Tokiyama H, Hirakawa T, Okamoto T. Chem Lett 1987; 627
- 13b Williams T, Wakeham S. Anal Chim Acta 1970; 52: 152
- 14 Vona JA, Merker PC. J Org Chem 1949; 14: 1048
- 15 Hussni P, Muathen A. J Org Chem 1992; 57: 2740
- 16 Chaudhuri MK, Khan AT, Patel BK. et al. Tetrahedron Lett 1998; 39: 8163
- 17a Srivastava SK, Chauhan PMS, Bhaduri AP. Chem Commun 1996; 2679
- 17b Espenson JH, Zhu Z, Zauch TH. J Org Chem 1999; 64: 1191
- 17c Maurya MR, Saklani H, Agarwal S. Catal Commun 2004; 5: 563
- 17d Choudhary VR, Samanta C, Gaikwad AG. Chem Commun 2004; 2054
- 17e Mohan KK, Narender N, Srinivasu P, Kulkarni SJ, Raghvan KV. Synth Commun 2004; 34: 2143
- 17f Joshi AV, Baidossi M, Mukhopadhyay S, Sasson Y. Org Process Res Dev 2004; 8: 568
- 17g Goodman MA, Detty MR. Organometallics 2004; 23: 3016
- 17h Narender N, Mohan KVVK, Kulkarni SJ, Raghavan KV. J Chem Res 2003; 9: 597
- 17i Drake MD, Bateman MA, Detty MR. Organometallics 2003; 22: 4158
- 17j Narender N, Mohan KVVK, Reddy RV. et al. Catal A Chem 2003; 192: 73
- 17k Bogdal D, Lukasiewicz M, Pielichowski J. Green Chem 2004; 6: 110
- 17l Mestres R, Palenzuela J. Green Chem 2002; 4: 314
- 17m Sinha J, Layek S, Mandal GC, Bhattacharjee M. Chem Commun 2001; 1916
- 18a Sorabad GS, Maddani MR. New J Chem 2019; 43: 5996
- 18b Sorabad GS, Maddani MR, Asian J. Org Chem 2019; 8: 1336
- 18c Sorabad GS, Maddani MR. New J Chem 2019; 43: 6563
- 18d Rai V, Sorabad GS, Maddani MR. New J Chem 2021; 45: 1109
- 18e Rai V, Sorabad GS, Maddani MR. New J Chem 2021; 45: 3969
- 19 Hussain H, Green IR, Ahmed I. Chem Rev 2013; 113: 3329
- 20 Earl JC. Recl Trav Chim Pays-Bas 1956; 75: 1080
- 21a Gond KK, Maddani MR. Org Biomol Chem 2023; 21: 2504
- 21b Serrao LG, Rai V, Periyasamy G, Maddani MR, Asian J. Org Chem 2023; e202300032
- 21c Serrao LG, Naveenkumar S, Maddani MR. Eur J Org Chem 2024; e202400703
- 22 General experimental procedure for the preparation of halogenated sydnones: To a 25-mL RB flask was added sydnone 1 (1.0 equiv 0.56 mmol), KX (1.1 equiv), oxone (1.1 equiv), and aq. acetonitrile (1:1, 2.0 mL). The reaction mixture was stirred at room temperature. The progress of the reaction was monitored by TLC. After completion of the reaction, the reaction mixture was quenched with water and extracted with dichloromethane (DCM). The combined organic layer was washed with water, saturated brine solution, and dried over sodium sulphate. The organic layer was concentrated under reduced pressure to obtain the crude product. The crude product was then washed with hexane to obtain the respective halogenated sydnone 2. 4-Bromo-3-phenyl-1,2,3-oxadiazol-3-ium-5-olate (2a): Off-white solid; Yield-96% (140 mg); m.p. 103–105 °C; R f = (0.7 in 20% EtOAc/PET); 1H NMR (400 MHz, DMSO-d 6) δ = 7.83–7.81 (m, 2H), 7.80–7.77 (m, 1H), 7.76–7.72 (m, 2H); 13C NMR (101 MHz, DMSO- d 6) δ = 165.3, 133.8, 132.7, 130.1, 125.5, 86.4; HRMS (ESI): m/z calcd for C8H5BrN2O2 [M+H] 240.9534, found 240.9538. 4-Bromo-3-(p-tolyl)-1,2,3-oxadiazol-3-ium-5-olate (2b): Off-white solid; Yield-98% (142 mg); m.p. 135–137 °C; R f = (0.7 in 20% EtOAc/PET); 1H NMR (400 MHz, DMSO-d 6) δ = 7.67 (d, J = 8.6 Hz, 2H), 7.51 (d, J = 8.1 Hz, 2H), 2.43 (s, 3H); 13C NMR (101 MHz, DMSO-d 6) δ = 165.4, 143.0, 131.3, 130.4, 125.2, 86.3, 20.9; HRMS (ESI): m/z calcd for C9H7BrN2O2 [M+H] 254.9691, found 254.9693. 4-Chloro-3-phenyl-1,2,3-oxadiazol-3-ium-5-olate (2o): Brown solid; Yield-95% (116 mg); m.p. 107–109 °C; R f = (0.7 in 20% EtOAc/PET); 1H NMR (400 MHz, DMSO-d 6) δ = 7.85–7.82 (m, 2H), 7.80–7.76 (m, 1H), 7.76–7.71 (m, 2H); 13C NMR (101 MHz, DMSO-d6) δ = 163.4, 132.8, 130.1, 125.3, 99.2; HRMS (ESI): m/z calcd for C8H5ClN2O2 [M+H] 197.0040, found 197.0042. 4-Chloro-3-(p-tolyl)-1,2,3-oxadiazol-3-ium-5-olate (2p): Pale brown solid; Yield-97% (116 mg); m.p. 124–126 °C; R f = (0.7 in 20% EtOAc/PET); 1H NMR (400 MHz, DMSO-d 6) δ = 7.75–7.69 (m, 2H), 7.53 (d, J = 8.1 Hz, 2H), 2.44 (s, 3H); 13C NMR (101 MHz, DMSO-d 6) δ = 163.4, 143.1, 130.4, 130.3, 125.0, 99.1, 20.9; HRMS (ESI): m/z calcd for C9H7ClN2O2 [M+H] 211.0196, found 211.0199. 4-Iodo-3-phenyl-1,2,3-oxadiazol-3-ium-5-olate (2w): Off-white solid; Yield-97% (172 mg); m.p. 172–174 °C; R f = (0.7 in 20% EtOAc/PET); 1H NMR (400 MHz, DMSO-d 6) δ = 7.74–7.70 (m, 3H), 7.69–7.65 (m, 2H); 13C NMR (101 MHz, DMSO- d 6) δ = 168.9, 135.3, 132.4, 129.9, 125.7, 57.8; HRMS (ESI): m/z calcd for C8H5IN2O2 [M+H] 288.9396, found 288.9398. 4-Iodo-3-(p-tolyl)-1,2,3-oxadiazol-3-ium-5-olate (2x): Off-white solid; Yield-98% (164 mg); m.p. 164–166 °C; R f = (0.7 in 20% EtOAc/PET); 1H NMR (400 MHz, DMSO-d 6) δ = 7.53 (d, J = 8.3 Hz, 2H), 7.40 (d, J = 8.1 Hz, 2H), 2.33 (s, 3H); 13C NMR (101 MHz, DMSO-d6) δ = 169.0, 142.7, 132.9, 130.3, 125.4, 57.7, 20.9; HRMS (ESI): m/z calcd for C9H7IN2O2 [M+H] 302.9552, found 302.9557.