Subscribe to RSS
DOI: 10.1055/a-2665-4806
Möglichkeiten und Limitationen der CT-gesteuerten Intervention
Possibilities and Limitations of CT-guided InterventionAuthors

Zusammenfassung
Die CT-gesteuerte transthorakale Lungenbiopsie (CT-TTNB) ist eine essenzielle Methode
zur Diagnostik pulmonaler Rundherde und Raumforderungen. Mit einer Sensitivität
von
85–97% und einer Spezifität von 85–100% bietet sie eine hohe diagnostische Genauigkeit.
Durch den Einsatz von Core-Needle-Biopsien können qualitativ hochwertige Gewebeproben
gewonnen werden, die molekulare Analysen für eine personalisierte Therapie
ermöglichen.
Parallel hat sich die Lungenablation als wertvolle minimalinvasive
Therapie etabliert. Verfahren wie Radiofrequenzablation (RFA), Mikrowellenablation
(MWA)
und Kryoablation ermöglichen eine gezielte Tumorzerstörung, insbesondere bei inoperablen
Patienten mit NSCLC oder Lungenmetastasen. Studien belegen eine hohe lokale
Tumorkontrolle bei akzeptablen Komplikationsraten. Die Kombination aus Bildgebung
und
interventioneller Technik bietet gute Ergebnisse bei niedrigen
Komplikationsraten.
Insgesamt sind CT-gesteuerte Punktion und Ablation integrale
Bestandteile der modernen Diagnostik bei primären und sekundären Lungentumoren,
und
bietet gleichzeitig eine neue Therapieoption. Sie bieten präzise, risikoarme
Alternativen zu invasiven Verfahren und tragen können daher zu einer effektiven
Patientenversorgung beitragen.
Abstract
CT-guided transthoracic lung biopsy (CT-TTNB) is an essential method for the diagnosis
of pulmonary nodules and masses. With a sensitivity of 85–97% and a specificity
of
85–100%, it offers high diagnostic accuracy. By using core-needle biopsies, high-quality
tissue samples can be obtained that enable molecular analyses for personalised
therapy.
At the same time, lung ablation has established itself as a valuable
minimally invasive therapy. Procedures such as radiofrequency ablation (RFA), microwave
ablation (MWA) and cryoablation enable targeted tumour destruction, particularly
in
inoperable patients with NSCLC or lung metastases. Studies have shown a high level
of
local tumour control with acceptable complication rates. The combination of imaging
and
interventional technique significantly improves patient safety and treatment outcomes
and offers good results with low complication rates.
Overall, CT-guided puncture and
ablation are integral components of modern lung cancer diagnostics for primary
and
secondary lung tumours, while offering a new treatment option and therapy. They
offer
precise, low-risk alternatives to invasive procedures and can therefore make a
significant contribution to effective patient care.
Publication History
Received: 06 February 2025
Accepted after revision: 22 July 2025
Article published online:
25 August 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Heerink WJ, de Bock GH, de Jonge GJ. et al. Complication rates of CT-guided transthoracic lung biopsy: meta-analysis. Eur Radiol 2017; 27: 138-148
- 2 Huang ZG, Sun HL, Wang CL. et al. CT-guided transthoracic needle biopsy of pulmonary lesions: comparison between the cutting needle and aspiration needle. Br J Radiol 2021; 94: 20190930
- 3 Popper HH, Timar J, Ryska A. et al. Minimal requirements for the molecular testing of lung cancer. Transl Lung Cancer Res 2014; 3: 301-304
- 4 Thunnissen E, Kerr KM, Herth FJ. et al. The challenge of NSCLC diagnosis and predictive analysis on small samples. Practical approach of a working group. Lung Cancer 2012; 76: 1-18
- 5 Tomiyama N, Yasuhara Y, Nakajima Y. et al. CT-guided needle biopsy of lung lesions: a survey of severe complication based on 9783 biopsies in Japan. Eur J Radiol 2006; 59: 60-64
- 6 Shin YJ, Yi JG, Son D. et al. Diagnostic Accuracy and Complication of Computed Tomography (CT)-Guided Percutaneous Transthoracic Lung Biopsy in Patients 80 Years and Older. J Clin Med 2022; 11: 5894
- 7 Wahidi MM, Herth F, Yasufuku K. et al. Technical Aspects of Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration: CHEST Guideline and Expert Panel Report. Chest 2016; 149: 816-835
- 8 Alexander ES, Petre EN, Bodard S. et al. Comparison of a Patient-Mounted Needle-Driving Robotic System versus Single-Rotation CT Fluoroscopy to Perform CT-Guided Percutaneous Lung Biopsies. J Vasc Interv Radiol 2024; 35: 859-864
- 9 Inoue M, Minami M, Sato Y. et al. Clinical outcomes of video-assisted thoracoscopic surgery for pulmonary nodules: a retrospective review of 385 cases. Ann Thorac Cardiovasc Surg 2017; 23: 189-195
- 10 Wu CF, Lin CY, Hsieh MJ. et al. Pulmonary lobectomy by video-assisted thoracic surgery versus thoracotomy for lung cancer: a nationwide analysis. Ann Thorac Surg 2018; 105: 321-327
- 11 Ilonen IK, Kuitunen H, Säilä P. et al. Utility of circulating tumor DNA in diagnostics and monitoring of lung cancer: a prospective study. Lung Cancer 2021; 159: 94-100
- 12 Li BT, Janku F, Jung B. et al. Liquid biopsy in lung cancer: utility in diagnosis and monitoring of treatment response. Clin Cancer Res 2017; 23: 5103-5111
- 13 Veltri A, Bargellini I, Giorgi L. et al. CIRSE Guidelines on Percutaneous Needle Biopsy (PNB). Cardiovasc Intervent Radiol 2017; 40: 1501-1513
- 14 Hadi M, Walker C, Desborough M. et al. CIRSE Standards of Practice on Peri-operative Anticoagulation Management During Interventional Radiology Procedures. Cardiovasc Intervent Radiol 2021; 44: 523-536
- 15 Lalji UC, Wildberger JE, Zur Hausen A. et al. CT-Guided Percutaneous Transthoracic Needle Biopsies Using 10 G Large-Core Needles: Initial Experience. Cardiovasc Intervent Radiol 2015; 38: 1603-1610
- 16 Finley RJ, Mayo JR, Grant K. et al. Preoperative computed tomography-guided microcoil localization of small peripheral pulmonary nodules: a prospective randomized controlled trial. J Thorac Cardiovasc Surg 2015; 149: 26-31
- 17 Tafti BA, Genshaft S, Suh R. et al. Lung Ablation: Indications and Techniques. Semin Intervent Radiol 2019; 36: 163-175
- 18 Vogl TJ, Nour-Eldin NA, Albrecht MH. et al. Thermal Ablation of Lung Tumors: Focus on Microwave Ablation. Rofo 2017; 189: 828-843
- 19 Venturini M, Cariati M, Marra P. et al. CIRSE Standards of Practice on Thermal Ablation of Primary and Secondary Lung Tumours. Cardiovasc Intervent Radiol 2020; 43: 667-683
- 20 Pereira PL, Trubenbach J, Schmidt D. Radiofrequency ablation: basic principles, techniques and challenges. Rofo 2003; 175: 20-27
- 21 Lubner MG, Brace CL, Hinshaw JL. et al. Microwave tumor ablation: mechanism of action, clinical results, and devices. J Vasc Interv Radiol 2010; 21: S192-203
- 22 Bruners P. CT-guided local ablative interventions. Radiologie (Heidelb) 2023; 63: 490-496
- 23 Wang Y, Liu B, Cao P. et al. Comparison between computed tomography-guided percutaneous microwave ablation and thoracoscopic lobectomy for stage I non-small cell lung cancer. Thorac Cancer 2018; 9: 1376-1382
- 24 Bi N, Shedden K, Zheng X. et al. Comparison of the Effectiveness of Radiofrequency Ablation With Stereotactic Body Radiation Therapy in Inoperable Stage I Non-Small Cell Lung Cancer: A Systemic Review and Pooled Analysis. Int J Radiat Oncol Biol Phys 2016; 95: 1378-1390
- 25 Kodama H, Yamakado K, Takaki H. et al. Lung radiofrequency ablation for the treatment of unresectable recurrent non-small-cell lung cancer after surgical intervention. Cardiovasc Intervent Radiol 2012; 35: 563-569
- 26 Callstrom MR, Woodrum DA, Nichols FC. et al. Multicenter Study of Metastatic Lung Tumors Targeted by Interventional Cryoablation Evaluation (SOLSTICE). J Thorac Oncol 2020; 15: 1200-1209
- 27 de Baere T, Woodrum D, Tselikas L. et al. The ECLIPSE Study: Efficacy of Cryoablation on Metastatic Lung Tumors With a 5-Year Follow-Up. J Thorac Oncol 2021; 16: 1840-1849
- 28 Cervantes A, Adam R, Roselló S. et al. ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol 2023; 34: 10-32
- 29 Brooks ED, Sun B, Feng L. et al. Association of Long-term Outcomes and Survival With Multidisciplinary Salvage Treatment for Local and Regional Recurrence After Stereotactic Ablative Radiotherapy for Early-Stage Lung Cancer. JAMA Netw Open 2018; 1: e181390
- 30 Fintelmann FJ, Braun P, Mirzan SH. et al. Percutaneous Cryoablation: Safety and Efficacy for Pain Palliation of Metastases to Pleura and Chest Wall. J Vasc Interv Radiol 2020; 31: 294-300
- 31 Hou X, Zhuang X, Zhang H. et al. Artificial pneumothorax: a safe and simple method to relieve pain during microwave ablation of subpleural lung malignancy. Minim Invasive Ther Allied Technol 2017; 26: 220-226
- 32 Abtin FG, Eradat J, Gutierrez AJ. et al. Radiofrequency ablation of lung tumors: imaging features of the postablation zone. Radiographics 2012; 32: 947-969