RSS-Feed abonnieren
DOI: 10.1055/a-2684-3311
Ernährungsmedizinische Bedeutung von Ketonkörpern
Importance of ketone bodies in clinical nutritionAutoren
Zusammenfassung
Hohe Ketonkörperspiegel im Blut und eine Ketonämie finden sich im Hunger, bei Malnutrition und fortgeschrittene Kachexie (bei fortgeschrittenen Tumorerkrankungen) sowie schweren Stoffwechselentgleisung (bei Diabetischer Ketoazidose). Ketonkörper haben heute auch eine Bedeutung in der Diätetik (als low carb- oder ketogene Diäten zur Behandlung von Hyperinsulinämie, Insulinresistenz und Übergewicht), als ergogene Substanzen (z. B. im Sport), in der Therapie (z. B. in Form von fasting mimicking diets, FMD, in der Onkologie) und in der Diagnostik des Energiestoffwechsels.
Abstract
Elevated ketone body levels are found in starvation, malnutrition and advanced cachexia (in advanced cancer diseases) as well as severe metabolic derailments (in diabetic ketoacidosis). Today, ketone bodies are also important in dietetics (as low carb or ketogenic diets for the treatment of hyperinsulinaemia, insulin resistance and obesity), as ergogenic substances (e. g. in sport), in therapy (e. g. in the form of fasting mimicking diets, FMD, in oncology) and in the diagnosis of energy metabolism.
Schlüsselwörter
Ketogene Diät - Appetit - Energieverbrauch - Redoxstatus - Ketonkörper als TherapeutikaKeywords
ketogenic diet - energy expenditure - redox status - ketone bodies as therapeutics - appetitePublikationsverlauf
Eingereicht: 12. März 2025
Angenommen: 17. April 2025
Artikel online veröffentlicht:
05. Dezember 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Ludwig DS. The Ketogenic Diet: Evidence for Optimism but High-Quality Research Needed. J Nutr 2020; 150: 1354-1359
- 2 Puchalska P, Crawford PA. Multidimensional roles of ketone bodies in fuel metabolism, signaling and therapeutics. Cell Metab 2017; 25: 262-276
- 3 Bonora BM, Avogaro A, Fadini GP. Euglycemic ketoacidosis. Curr Diab Rep 2020; 20: 25
- 4 Seitz HJ, Tarnowski W. Nahrungs-abhängige Regulation des Intermediärstoffwechsels. In: Cremer HD, Hötzel D, Kühnau J, Hrsg. Ernährungslehre und Diätetik, Band 1: Biochemie und Physiologie der Ernährung. 1. Aufl. Stuttgart: Georg Thieme Verlag; 1980: 399-452
- 5 Müller MJ. Ketogene Diäten. Akt Ernährungsmed 2013; 38: 429-430
- 6 Erickson N, Boscherl A. Ketogene Diäten. Akt Ernährungsmed 2016; 41: 458-476
- 7 Shai I, Schwarzfuchs D, Henkin Y. et al. Weight loss with a low-carbohydrate, Mediterranean, or low fat diet. New Engl J Med 2008; 359: 229-241
- 8 Hall KD, Guo J, Courville AB. et al. Effects of a plant-based, low fat diet versus an animal-based ketogenic diet on ad libitum energy intake. Nat Med 2021; 27: 344-353
- 9 Gibson A, Seimon R, Lee C. et al. Do ketogenic diets really suppress appetite? A systematic review and meta-analysis. Obes Rev 2015; 16: 64-76
- 10 Hall KD, Chen KY, Guo J. et al. Energy expenditure and body composition changes after an isocaloric ketogenic diet in overweight and obese men. Am J Clin Nutr 2016; 104: 324-333
- 11 Martins C, Nyomo S, Truby H. et al. Association between ketosis and changes in appetite markers with weight loss following a very low energy diet. Obesity 2020; 28: 2331-2338
- 12 Dörner R, Hägele F, Müller MJ. et al. Effect of exogenous and endogenous ketones on respiratory exchange ratio and glucose metabolism in healthy subjects. Am J Physiol Cell Physiol 2024; 326: C1027-C1033
- 13 Luukkonen PK, Dufour S, Lyo K. et al. Effect of a ketogenic diet on hepatic steatosis and hepatic mitochondrial metabolism in non-alcoholic fatty liver disease. PNAS 2020; 117: 7347-7354
- 14 Yan Ang Q, Alexander M, Newman JC. et al. Keotgenic diets alter Gut microbiome resulting in decreases intestinal Th17 cells. Cell. 2020; 181: 1263-1275
- 15 Veech RL. The therapeutic implications of ketone bodies: the effects of ketone bodies in pathological conditions: ketosis, ketogenic diet, redox states, insulin resistance and mitochondrial metabolism. Prostaglandins Leukot Essent Fatty Acids 2004; 70: 309-319
- 16 Newman JC, Verdin E. ß-Hydroxybutyrate: A signaling molecule. Ann Rev Nutr 2017; 37: 51-76
- 17 Yang L, TeSlaa T, Ng S. et al. Ketogenic diet and chemotherapy combine to disrupt pancreatic cancer metabolism and growth. Med 2022; 3: 119-136
- 18 Nencioni A, Caffa I, Cortellino S. et al. Fasting and cancer: molecular mechanisms and clinical application. Nat Rev Cancer 2018; 18: 707-719
- 19 de Groot S, Lugtenberg RT, Cohen D. et al. Fasting mimicking diet as an adjunct to neoadjuvant chemotherapy for breast cancer in the multicentre randomized phase 2 DIRECT trial. Nat Commun 2020; 11: 3083
- 20 Bozzetti F. Calorie restriction in cancer patients undergoing chemotherapy: Facts, phantasy or misunderstanding. Clin Nutr 2022; 41: 1316-1319
- 21 Wang L, Chen P, Xiao W. ß-Hydroxybutyrate as an anti-aging metabolite. Nutrients 2021; 13: 3420
- 22 Rusek M, Pluta R, Ulamek-Koziol M. et al. Ketogenic diets in Alzheimer’s disease. Int J Molec Sci. 2019; 20: 3892
- 23 Selvaraj S, Kelly DP, Margulies KB. Implications of altered ketone metabolism and therapeutic ketosis in heart failure. Circulation 2020; 141: 1800-1812
- 24 Wilson DF. Oxidative phosphorylation: regulation and role in cellular and tissue metabolism. J Physiol 2017; 595: 7023-7038
- 25 Istfan N, Hasson B, Apovian C. et al. Acute carbohydrate overfeeding: a redox model of insulin action and its impact on metabolic dysfunction in humans. Am J Physiol Endocrinol Metab 2021; 321: E636-E651
- 26 Ozawa K, Chance B, Tanaka A. et al. Linear correlation between acetoacetate/ß-hydroxybutyrate in arterial blood and oxidized flavoprotein/reduced pyridine nucleotide in freeze-trapped human liver tissues. Biochim Biophys Acta 1992; 1138: 350-352
- 27 Yamaoka K, Kanayama M, Tajiri K. et al. Clinical significance of arterial ketone body ratio in chronic liver disease. Digestion 1998; 59: 360-363
- 28 Davies AO, Samuelson WM. Nonequilibrium of two redox couplets in human plasma: Lactate-pyruvate and beta hydroxybutyrate-acetoacetate. Crit Care Med 1986; 14: 936-941
- 29 Dörner R, Hägele FA, Koop J. et al. Validation of energy expenditure and macronutrient oxidation measured by two new whole-room indirect calorimeters. Obesity 2022; 30: 1796-1805
