RSS-Feed abonnieren
DOI: 10.1055/a-2698-0670
Deciphering the Reactivity of Quinoxaline
Autoren
B. K. P. acknowledges the support of this research by SERB (SCP/2022/000195, CRG/2022/004023). BD acknowledges the Assam Royal Global University Seed Money Grant RGU/Ch(Acad)/07/Chem (46).
Gefördert durch: Assam Royal Global University Seed Money RGU/Ch(Acad)/07/Chem (46

Abstract
This personal account is primarily focused on various functionalization tools for the quinoxaline moiety. This bicyclic heterocycle is widespread in natural products, pharmaceutical drugs, and agrochemicals and is also one of the core motifs for material science applications. Transition metals can induce various reactivity in this benzopyrazine ring viz., C3–H functionalization, annulation, spirocyclization, and bis-functionalization across the C=N bond, and so forth. Such functionalization enhances the biological activity of the core, thereby underscoring the importance of various synthetic processes. Our group has been actively engaged in developing new sustainable synthetic approaches for the functionalization of quinoxaline using thermal or green energy in the form of visible-light or solar energy. This review summarizes the various synthetic methodologies developed in our laboratory in order to functionalize the quinoxaline moiety.
Keywords
Quinoxaline - C–H functionalization - C3 maleimidation - Spiro-cyclization dehydrogenation - Bis-Functionalization - Oxidative annulations - Quaternary hydroxylation - Spiro-etherificationPublikationsverlauf
Eingereicht: 30. Juli 2025
Angenommen nach Revision: 08. September 2025
Accepted Manuscript online:
08. September 2025
Artikel online veröffentlicht:
30. Oktober 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Cheeseman GWH, Werstiuk ESG. Adv Heterocycl Chem 1978; 22: 367
- 1b Pereira JA, Pessoa AM, Cordeiro MNDS. et al. Eur J Med Chem 2015; 97: 664
- 1c Patidar AK, Jeyakandan M, Mobiya AK, Selvam G. Int J Pharm Tech Res 2011; 3: 386
- 1d Martin DG, Mizsak SA, Biles C, Stewart JC, Baczynskyj L, Meulman PA. J Antibiot 1975; 28: 332
- 1e Watanabe K. Biosci Biotechnol Biochem 2008; 72: 2491-2506
- 1f Tariq S, Somakala K, Amir M. Eur J Med Chem 2018; 143: 542
- 1g Baker DR, Fenyes JG, Basarab GS. eds. ACS Symposium Series. Washington, DC: American Chemical Society; 1995
- 1h Husain A, Madhesia. J Pharm Res 2011; 4: 924
- 1i Raphoko LA, Lekgau K, Lebepe CM, Leboho TC, Matsebatlela TM, Nxumalo W. Bioorg Med Chem Lett 2021; 35: 127784
- 1j Kim YB, Kim YH, Park JY, Kim SK. Bioorg Med Chem Lett 2004; 14: 541
- 1k Montana M, Mathias F, Terme T, Vanelle P. Eur J Med Chem 2019; 163: 136
- 2a Chang DW, Lee HJ, Kim JH. et al. Org Lett 2011; 13: 3880
- 2b Kanekar DN, Chacko S, Kamble RM. Dyes Pigm 2019; 167: 36
- 2c Yue H, Guo X, Du Y. et al. Synth Met 2021; 271: 116619
- 3a Suthar SK, Chundawat NS, Singh GP, Padrón JM, Jhala YK. Eur J Med Chem Rep 2022; 5: 100040
- 3b Muradás TC, Abbadi BL, Villela AD. et al. PLoS One 2018; 13: e0202568
- 3c Zayad MF. Chemistry 2023; 5: 2566
- 3d Marshall CM, Federice JG, Bell CN, Cox PB, Najardarson JT. J Med Chem 2024; 67: 11622
- 3e EzzEldin RR, Al-Karmalawy AA, Alotaibi MH, Saled MA. New J Chem 2022; 46: 9975
- 3f Laru S, Ghosh S, Hajra A. Synlett 2025; 26: 808
- 4a Jadhavar PS, Kumar D, Purohit P. et al. Sustainable approaches towards the synthesis of quinoxalines. In: Green Chemistry: Synthesis of Bioactive Heterocycles. New Delhi: Springer; 2014: 37
- 4b Yashwantrao G, Saha S. Org Chem Front 2021; 8: 2820
- 4c Le HX, Nguyen TT. ChemistrySelect 2022; 7: e202200166
- 4d Lupidi G, Palmieri A, Petrini M. Green Chem 2022; 24: 3629
- 4e Mondal K, Ghosh S, Hajra A. Org Biomol Chem 2022; 20: 7361
- 4f Azim A, Mandal T, Vasudevan V, Patra S, Desarkar S. Adv Synth Catal 2024; 366: 3361
- 4g Mondal S, Malode AK, Londhe GS, Gnanaprakasam B. Org Lett 2025; 27: 1465
- 5a Deng M, Ma Z, Liu K, Li B, Wu J, Dian L. Green Chem 2025; 27: 9094
- 5b Yang Z, Du H, Zhou Y, Yu M, Zhang J. Green Chem 2025; 27: 8498
- 5c Han T, Zhang S, Li J. et al. Green Chem 2025; 27: 7600
- 5d Alam T, Patel BK. Chem Eur J 2024; 30: e202303444
- 5e Das B, Chakraborty N, Dhara HN, Bhattacharyya P, Patel BK. J Org Chem 2024; 89: 1331
- 5f Chakraborty N, Rajbongshi KK, Gondaliya A, Patel BK. Org Biomol Chem 2024; 22: 2375
- 5g Goswami D, Sarma B, Dam B. Org Biomol Chem 2025; 23: 4306
- 5h Dam B, Sahoo AK, Patel BK. Green Chem 2022; 24: 7122
- 5i Dam B, Das B, Patel BK. Green Chem 2023; 25: 3374
- 5j Alam T, Rakshit A, Dhara HN, Palai A, Patel BK. Org Lett 2022; 24: 6619
- 6 Alam T, Gupta S, Patel BK. Chem Phys Chem 2024; 25: e202400599
- 7 Barik D, Chakraborty N, Sahoo AK, Dhara HN, Patel BK. Chem Commun 2024; 60: 12577
- 8 Mandal R, Ghosh S, Laha S, Panigrahi P, Bhattacharyya K, Patel BK. Org Lett 2025; 27: 4257
- 9 Ghosh S, Khandelia T, Panigrahi P, Mandal R, Patel BK. Org Lett 2023; 25: 3806
- 10 Khandelia T, Ghosh S, Patel BK. Chem Commun 2023; 59: 2118
- 11 Yu J, Zhao H, Liang S, Bao X, Zhu C. Org Biomol Chem 2015; 13: 7924
- 12a Pagliaro M, Campestrini S, Ciriminna R. Chem Soc Rev 2005; 34: 837
- 12b McArthur G, Docherty JH, Hareram MD. et al. Nat Chem 2024; 16: 1141
- 12c Arockiam PB, Bruneau C, Dixneuf PH. Chem Rev 2012; 112: 5879
- 13 Ghosh S, Pal S, Rajamanickam S. et al. ACS Omega 2019; 4: 5565
- 14 Ghosh S, Khandelia T, Mahadevan A. et al. Chem Eur J 2024; 30: e2024400219