RSS-Feed abonnieren
DOI: 10.1055/a-2698-2720
Synthesis and Chiroptical Characterization of a Negatively Curved Helicene with a Central Tropone Unit
Autoren
The generous funding by the Deutsche Forschungsgemeinschaft (DFG) – Project number 281029004-SFB 1249 is acknowledged. The authors acknowledge the support by the state of Baden-Württemberg through bwHPC and DFG through grant no. INST 40/575-1 FUGG (JUSTUS 2 cluster).
Gefördert durch: Deutsche Forschungsgemeinschaft (DFG) 281029004-SFB 1249

Abstract
We report the synthesis of an π-expanded [5]helicene incorporating a seven-membered tropone unit. The synthesis was based on a cycloaddition-cyclization strategy that exploited the versatile reactivity of alkynes. X-ray crystallographic analysis of the racemic compound revealed its highly twisted structure and provided insights into the structural impacts of the tropone moiety on the [5]helicene subunit. Enantiomeric resolution by chiral HPLC followed by an assessment of the configurational stability revealed a significantly reduced barrier for racemization compared to pristine [5]helicene. Density functional theory calculations on the racemization mechanism identified the crucial role of the flexible tropone unit in preorganizing the molecular framework toward the transition-state geometry, thereby lowering the activation barrier.
Keywords
Chiral nanographenes - [4+2] Cycloadditions - Cyclodehydrogenation - Helicenes - Polycyclic aromatic hydrocarbons - TroponePublikationsverlauf
Eingereicht: 30. Juni 2025
Angenommen nach Revision: 09. September 2025
Accepted Manuscript online:
09. September 2025
Artikel online veröffentlicht:
07. November 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Castro-Esteban J, Albrecht F, Fatayer S, Pérez D, Gross L, Peña D. Angew Chem Int Ed 2021; 60: 26346
- 1b Gonzalez-Rodriguez E, Abdo MA, Dos Passos Gomes G. et al. J Am Chem Soc 2020; 142: 8352
- 1c Gu Y, Muñoz-Mármol R, Wu S. et al. Angew Chem Int Ed 2020; 59: 8113
- 1d Magiera KM, Aryal V, Chalifoux WA. Org Biomol Chem 2020; 18: 2372
- 1e Shen H-C, Tang J-M, Chang H-K, Yang C-W, Liu R-S. J Org Chem 2005; 70: 10113
- 2a González Miera G, Matsubara S, Kono H, Murakami K, Itami K. Chem Sci 2022; 13: 1848
- 2b Chaolumen, Stepek IA, Yamada KE, Ito H, Itami K. Angew Chem Int Ed 2021; 60: 23508
- 2c Majewski MA, Stępień M. Angew Chem Int Ed 2019; 58: 86
- 2d Pun SH, Miao Q. Acc Chem Res 2018; 51: 1630
- 3a Tochtermann W, Schnabel G, Mannschreck A. Justus Liebigs Ann Chem 1967; 705: 169
- 3b Tochtermann W, Oppenländer K, Walter U. Chem Ber 1964; 97: 1318
- 3c Tochtermann W, Oppenländer K, Walter U. Chem Ber 1964; 97: 1329
- 4a Borstelmann J, Bergner J, Rominger F, Kivala M. Angew Chem Int Ed 2023; 62: e202312740
- 4b Pun SH, Chan CK, Luo J, Liu Z, Miao Q. Angew Chem Int Ed 2018; 57: 1581
- 4c Cheung KY, Xu X, Miao Q. J Am Chem Soc 2015; 137: 3910
- 5a Cruz CM, Márquez IR, Mariz IFA. et al. Chem Sci 2018; 9: 3917
- 5b Cruz CM, Castro-Fernández S, Maçôas E, Cuerva JM, Campaña AG. Angew Chem Int Ed 2018; 57: 14782
- 5c Cruz CM, Márquez IR, Castro-Fernández S, Cuerva JM, Maçôas E, Campaña AG. Angew Chem Int Ed 2019; 58: 8068
- 5d Míguez-Lago S, Mariz IFA, Medel MA. et al. Chem Sci 2022; 13: 10267
- 5e Kumar V, Páez JL, Míguez-Lago S, Cuerva JM, Cruz CM, Campaña AG. Chem Soc Rev 2025; 54: 4922
- 6 1,4-Bis(dibromomethyl)-9H-tribenzo[a,c,e][7]annulen-9-one (4). In a heat gun dried Schlenk flask, 3 (300 mg, 1.06 mmol); NBS (1.13 g, 6.33 mmol); and CaCO3 (211 mg, 2.11 mmol) were dissolved in anhydrous CH2Cl2 (50.0 mL) under N2 atmosphere. The solution was stirred and irradiated with light (2700 K, 1570 mL, 23 W and 6500 K, 1450 mL, 23 W) at rt for 14 h in total. After 2 h and 4 h more NBS was added (751 mg, 4.22 mmol each time). The resulting solution was acidified with aq. HCl (10 M, 5 mL) and washed with aq. NaHSO3 (1 M, 20 mL). The combined organic phases were dried over anhydrous Na2SO4 and the solvent was removed under reduced pressure. The crude product was purified via flash column chromatography (SiO2, PE/CH2Cl2 3:1) to afford 4 (428 mg, 1.06 mmol, 68%) as a colorless solid.
- 7 9-Oxo-9H-tribenzo[a,c,e][7]annulene-1,4-dicarbaldehyde (5). In a pressure flask, 4 (776 mg, 1.29 mmol) was suspended in a mixture of H2O/DMF (160 mL, 1:3 v/v) while stirring. CaCO3 (1.04 g, 10.4 mmol) was added and the mixture was stirred at 110 °C for 16 h. After cooling to rt the mixture was partitioned by addition of EtOAc (100 mL) and water (100 mL), the organic phase was dried over Na2SO4 and the solvent removed under reduced pressure. The crude product was purified via flash column chromatography (SiO2, PE/EtOAc, 9:1 → 5:1 → 4:1) to yield 5 (301 mg, 1.29 mmol, 74%) as a colorless solid.
- 8 1,4-Bis(2,2-dibromoethenyl)-9H-tribenzo[a,c,e][7]annulen-9-one 2 (6). In a heat gun dried Schlenk flask, triphenylphosphine (336 mg, 1.28 mmol) and carbon tetrabromide (212 mg, 640 μmol) were dissolved in anhydrous CH2Cl2 (8 mL) under N2 atmosphere and cooled to 0 °C. The solution was kept stirring for 30 min before adding a solution of 5 (80.0 mg, 256 μmol) in anhydrous CH2Cl2 (3 mL). The reaction mixture was allowed to warm up to rt and kept stirring for 1h while monitoring the reaction progress via TLC. A mixture of PE/EtOAc (30 mL, 1:1 v/v) was added to the reaction mixture, which was afterward filtered over a pad of silica before concentrating the solution under reduced pressure. The crude product was purified via flash column chromatography (SiO2, PE/CH2Cl2 4:1 → 2:1) to obtain the product 6 (119 mg, 191 μmol, 75%).
- 9 1,4-Diethynyl-9H-tribenzo[a,c,e][7]annulen-9-one (2). In a heat gun dried microwave flask, triphenylphosphine (25.2 mg, 96.2 μmol), TBAF·3 H2O (121 mg, 385 μmol) and 6 (20.0 mg, 32.1 μmol) were dissolved in anhydrous THF (5 mL) and water (250 μL) under N2 atmosphere and heated to 80 °C for 72 h. The solution was allowed to cool down to rt and then diluted with CH2Cl2 (5 mL) before separating the phases. The combined organic phases were then washed with water (2 × 10 mL) and sat. aq. NaCl (2 × 10 mL). The crude product was purified via flash column chromatography (SiO2, PE/CH2Cl2 2:1 → 1:1) to obtain 2 (8.40 mg, 27.6 μmol, 86%) as a colorless solid.
- 10 Zhai L, Shukla R, Rathore R. Org Lett 2009; 11: 3474
- 11 1,4-Bis[14,34-di-tert-butyl-23,26-bis(4-tert-butylphenyl) [11,21:22,31-terphenyl]-24-yl]-9H-tribenzo[a,c,e][7]annulen-9-one (7). In a microwave flask, 2 (15.0 mg, 49.3 μmol) and 2,3,4,5-tetrakis(4-(tert-butyl)phenyl)cyclopenta-2,4-dien-1-one (66.0 mg, 108 μmol) were dissolved in diphenyl ether (150 μL) and heated to 220 °C for 16 h under Ar atmosphere. The mixture was allowed to cool to rt and was afterward purified via flash column chromatography (SiO2, PE/CH2Cl2 9:1 → 4:1 → 2:1) to obtain 7 (65.3 mg, 44.5 μmol, 90%) as a colorless solid.
- 12 Tropone Helicene (TPH). In a heat gun dried Schlenk flask, 7 (10.0 mg, 6.82 μmol) and DDQ (20.4 mg, 90.0 μmol) were dissolved in anhydrous CH2Cl2 (10 mL) and cooled to 0 °C. While stirring trifluoromethanesulfonic acid (100 μL) was added dropwise over 5 min and the resulting mixture was stirred at 0 °C for 30 min. After completion the reaction mixture was carefully treated with NEt3 (1 mL) and MeOH (1 mL). The solvent was removed under reduced pressure and the crude product was purified by flash column chromatography (SiO2, PE/CH2Cl2 2:1 → 1:1) to afford TPH (2.80 mg, 1.94 μmol, 28%) as a red solid.
- 13 Deposit numbers CCDC 2467544 (for 4), 2467545 (for 5), 2467546 (for 6), 2467547 (for 2), 2467548 (for 7) and 2467549 (for TPH) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.
- 14a Kuroda R. J Chem Soc Perkin Trans 2 1982; 789
- 14b Ravat P, Hinkelmann R, Steinebrunner D, Prescimone A, Bodoky I, Juríček M. Org Lett 2017; 19: 3707
- 15 Márquez IR, Fuentes N, Cruz CM. et al. Chem Sci 2017; 8: 1068
- 16a Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ. J Phys Chem 1994; 98: 11623
- 16b Becke AD. J Chem Phys 1993; 98: 5648
- 16c Lee C, Yang W, Parr RG. Phys Rev B Condens Matter 1988; 37: 785-789
- 16d Vosko SH, Wilk L, Nusair M. Can J Phys 1980; 58: 1200
- 17a Grimme S, Antony J, Ehrlich S, Krieg H. J Chem Phys 2010; 132: 154104
- 17b Grimme S, Ehrlich S, Goerigk L. J Comput Chem 2011; 32: 1456
- 18a Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PVR. J Comput Chem 1983; 4: 294
- 18b Krishnan R, Binkley JS, Seeger R, Pople JA. J Chem Phys 1980; 72: 650
- 19 Yanai T, Tew DP, Handy NC. Chem Phys Lett 2004; 393: 51
- 20a Kubo H, Hirose T, Matsuda K. Org Lett 2017; 19: 1776
- 20b Birks JB, Birch DJS, Cordemans E, Van der Donckt E. Chem Phys Lett 1976; 43: 33-36
- 20c Sapir M, Vander Donckt E. Chem Phys Lett 1975; 36: 108-110
- 21a Nakakuki Y, Hirose T, Sotome H. et al. Nat Commun 2022; 13: 1475
- 21b Swain AK, Kolanji K, Stapper C, Ravat P. Org Lett 2021; 23: 1339
- 22 Goedicke C, Stegemeyer H. Tetrahedron Lett 1970; 11: 937
- 23 Grimme S, Hansen A, Ehlert S, Mewes J-M. J Chem Phys 2021; 154: 64103
- 24 Costa JC, Taveira RJ, Lima CF, Mendes A, Santos LM. Opt Mater 2016; 58: 51
- 25a Cardona CM, Li W, Kaifer AE, Stockdale D, Bazan GC. Adv Mater 2011; 23: 2367
- 25b Bard AJ, Faulkner LR. Electrochemical Methods. Fundamentals and Applications. New York, Weinheim: Wiley; 2001
- 25c Hansen WN, Hansen GJ. Phys Rev A 1987; 36: 1396
- 25d Trasatti S. Pure Appl Chem 1986; 58: 955
- 26 Chen Z, Wannere CS, Corminboeuf C, Puchta R, Schleyer PVR. Chem Rev 2005; 105: 3842
- 27a Kruszewski J, Krygowski TM. Tetrahedron Lett 1972; 13: 3839
- 27b Krygowski TM, Cyrański MK. Chem Rev 2001; 101: 1385