Subscribe to RSS
DOI: 10.1055/a-2705-9082
A Tandem Aldol/Desilylation/CuAAC Sequence of Difluoroenoxysilanes and Silyl-α-ketoalkynes to α-Fluoroketone α-1,2,3 Triazole Tertiary Alcohol
Authors
Supported by: Technology Innovation Project of Shanghai Municipal Agricultural Committee HNK(T2023302)
Supported by: National Natural Science Foundation of China 22171087
Supported by: Innovation Program of Shanghai Municipal Education Commission 2023ZKZD37
Supported by: other fund 2023AA004,2023B01019,2024AB055
Funding Information This work was financially supported by the National Natural Science Foundation of China (No. 22171087), the Innovation Program of Shanghai Municipal Education Commission (No. 2023ZKZD37), Technology Innovation Project of Shanghai Municipal Agricultural Committee [No. HNK(T2023302)], the Ministry of Education (PCSIRT) and the Fundamental Research Funds for the Central Universities, and other funds (No. 123, 457, 1233), (No. 2023AA004), (No. 2024AB055), and (No. 2023B01019).

Abstract
A one-pot tandem aldol/desilylation/CuAAC sequence is developed, allowing the facile synthesis of tertiary alcohols featuring an α-difluoroketone moiety and a 1,2,3-triazole at the α position in moderate to good yields, with an operationally friendly manner. While Bi(OTf)3 was the optimal catalyst for the Mukaiyama-aldol reaction of silyl-α-ketoalkynes and difluoroenoxysilanes, CuCl was found to efficiently mediate the alkyne–azide cycloaddition.
Keywords
Aldol/desilylation/CuAAC reaction - Difluoroenoxysilanes - Silyl-α-ketoalkynes - α-Fluoroketone α-1,2,3 triazole tertiary alcoholPublication History
Received: 10 July 2025
Accepted after revision: 02 September 2025
Accepted Manuscript online:
19 September 2025
Article published online:
05 November 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Ma J-A, Cahard D. Chem Rev 2004; 104: 6119
- 1b Zafrani Y, Sod-Moriah G, Yeffet D. et al. J Med Chem 2019; 62: 5628
- 1c Deng Z, Meng L, Bing X. et al. J Am Chem Soc 2024; 146: 2325
- 1d Müller K, Faeh C, Diederich F. Science 1881; 2007: 317
- 1e Hagmann WK. J Med Chem 2008; 51: 4359
- 1f Purser S, Moore PR, Swallow S, Gouverneur V. Chem Soc Rev 2008; 37: 320
- 1g Thiehoff C, Rey YP, Gilmour R. Isr J Chem 2017; 57: 92 and references cited therein
- 2a Kolb HC, Sharpless KB. Drug Discov Today 2003; 8: 1128
- 2b Agalave SG, Maujan SR, Pore VS. Chem Asian J 2011; 6: 2696
- 2c Bonandi E, Christodoulou MS, Fumagalli G, Perdicchia D, Rastelli G, Passarella D. Drug Discovery Today 2017; 22: 1572
- 3a Pourquier P, Gioffre C, Kohlhagen G. et al. Clin Cancer Res 2002; 8: 2499
- 3b Lefebvre O, Brigand T, Portella C. Tetrahedron 1999; 55: 7233
- 3c Uoto K, Ohsuki S, Takenoshita H. et al. Chem Pharm Bull 1997; 45: 1793
- 3d Xiang S, Guo Y, Liu X, Wang Y. Chem Res Chin Univ 2023; 40: 47
- 3e Luo Z, Liu C, Radu A. et al. Nat Chem Eng 2024; 1: 61
- 4a Nicolaou KC, Montagnon T. Molecules that Changed the World. Wiley-VCH: Weinheim; 2008
- 4b Ouellet SG, Gauvreau D, Cameron M. et al. Org Process Res Dev 2012; 16: 214
- 4c Shibasaki M, Kanai M. Chem Rev 2008; 108: 2853
- 5a Yotsuji A, Shimizu K, Araki H. et al. Antimicrob Agents Ch 1997; 41: 30
- 5b Hargrove TY, Friggeri L, Wawrzak Z. et al. J Biol Chem 2017; 292: 6728
- 6a Tornøe CW, Christensen C, Meldal M. J Org Chem 2002; 67: 3057-3064
- 6b Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. Angew Chem Int Ed 2002; 41: 2596
- 7a Zhou F, Tan C, Tang J. et al. J Am Chem Soc 2013; 135: 10994
- 7b Zhu R-Y, Chen L, Hu X-S, Zhou F, Zhou J. Chem Sci 2020; 11: 97
- 7c Wang C, Zhu R-Y, Liao K, Zhou F, Zhou J. Org Lett 2020; 22: 1270
- 7d Liao K, Gong Y, Zhu R-Y, Wang C, Zhou F, Zhou J. Angew Chem Int Ed 2021; 60: 8488
- 7e Gong Y, Wang C, Zhou F. et al. Angew Chem Int Ed 2023; e202301470
- 7f Zhang Z, Sun Y, Gong Y. et al. Nat Chem 2024; 16: 521
- 7g Zhang Z, Zhang Z-H, Sun Y. et al. Sci China Chem 2025; 68: 1402
- 7h Zhang X-X, Tang D-L, Xie X-Z. et al. Sci China Chem. 2025
- 7i Gong Y, Zhang Z, Liu H. et al. Nat Commun 2025; 16: 4571
- 8a Decostanzi M, Campagne J-M, Leclerc E. Org Biomol Chem 2015; 13: 7351
- 8b Kodama Y, Okumura M, Yanabu N, Taguchi T. Tetrahedron Lett 1996; 37: 1061
- 8c Jonet S, Cherouvrier F, Brigaud T, Portella C. Eur J Org Chem 2005; 4304
- 8d Chu L, Zhang X, Qing F-L. Org Lett 2009; 11: 2197
- 8e Yuan Z, Wei Y, Shi M. Chin J Chem 2010; 28: 1709
- 8f Yuan Z, Mei L, Wei Y. et al. Org Biomol Chem 2012; 10: 2509
- 8g Kashikura W, Mori K, Akiyama T. Org Lett 2011; 13: 1860
- 8h Chorki F, Grellepois F, Crousse B, Ourévitch M, Bonnet-Delpon D, Bégué J-P. J Org Chem 2001; 66: 7858
- 8i Lefebvre O, Brigaud T, Portella C. J Org Chem 2001; 66: 1941
- 8j Decostanzi M, Godemert J, Oudeyer S, Levacher V, Campagne J-M, Leclerc E. Adv Synth Catal 2016; 358: 526
- 8k Guo Y, Shreeve J-M. Chem Commun 2007; 3583
- 8l Uneyama K, Tanaka H, Kobayashi S, Shioyama M, Amii H. Org Lett 2004; 6: 2733
- 8m Bélanger É, Cantin K, Messe O, Tremblay M, Paquin J-F. J Am Chem Soc 2007; 129: 1034
- 9a Liu Y-L, Zhou J. Chem Commun 2012; 48: 1919
- 9b Liu Y-L, Liao F-M, Niu Y-F, Zhao X-L, Zhou J. Org Chem Front 2014; 1: 742
- 9c Liu Y-L, Zeng X-P, Zhou J. Acta Chim Sin 2012; 70: 1451
- 9d Yu J-S, Liu Y-L, Tang J, Wang X, Zhou J. Angew Chem Int Ed 2014; 53: 9512
- 9e Liao F-M, Liu Y-L, Yu J-S, Zhou F, Zhou J. Org Biomol Chem 2015; 13: 8906
- 9f Yu J-S, Zhou J. Org Biomol Chem 2015; 13: 10968
- 9g Yu J-S, Zhou J. Org Chem Front 2016; 3: 298
- 9h Yu J-S, Liao F-M, Gao W-M, Liao K, Zuo R-L, Zhou J. Angew Chem Int Ed 2015; 54: 7381
- 9i Zeng X-P, Zhou J. J Am Chem Soc 2016; 138: 8730
- 9j Liao F-M, Cao Z-Y, Yu J-S, Zhou J. Angew Chem Int Ed 2017; 56: 2459
- 9k Gong Y, Yu JS, Hao YJ, Zhou Y, Zhou J, Asian J. Org Chem 2019; 8: 610
- 9l Liao K, Hu XS, Zhu RY. et al. Chin J Chem 2019; 37: 799
- 9m Hao Y-J, Gong Y, Zhou Y, Zhou J, Yu J-S. Org Lett 2020; 22: 8516
- 9n He J-X, Dong S-Z, Zhao Q-H, Yu J-S, Zhou J. Nat Commun 2020; 11: 5000
- 9o Hu X-S, Yu J-S, Zhou J. ChemCommun 2019; 55: 13638
- 9p Zhang X-X, Tang D-L, Xie X-Z, Gao Y, Ma C, Zhou F, Zhou J, Yu J-S. Sci China Chem. 2025 https://doi.org/10.1007/s11426-025-2720-1
- 9q Zhang Z, Zhang Z-H, Sun Y, Tang Y-H, Yang Y-Z, Zhou F, Zhou J. Sci China Chem 2025; 68: 1402-1411
- 11 Chassaing S, Kumarraja M, Sani Souna Sido A, Pale P, Sommer J. Org Lett 2007; 9: 883
- 12a 3-(1-Benzyl-1H-1,2,3-triazol-4-yl)-2,2-difluoro-3-hydroxy-1-phenylbutan-1-one (1a); Typical Procedure.
- 12b To a 10 mL Schlenk tube were added Bi(OTf)3 (16.4 mg, 10 mol%) and ynones 5c (35.1mg, 0.25 mmol), followed by the addition of anhydrous DCE (2.5 mL) and difluoroenoxysilanes 4a (89.3 mg, 0.375 mmol) at 0 °C. The reaction mixture was stirred at 0 °C until full conversion of ynones 5c by TLC analysis. Subsequently, TBAF (0.375 mL, 1 M in THF) was added to the reaction mixture and stirred at room temperature. After full conversion of aldol product 2c by TLC until the solvent was evaporated and dried under vacuum to give the residue. To the Schlenk tube containing the above residue were added CuCl (2.5 mg, 10 mol%) and CH3CN (2.5 mL) under an N2 atmosphere, followed by the addition of benzylazide 6a (49.9 mg, 0.375 mmol). The resulting mixture was stirred at 40 °C until full conversion of 2b by TLC analysis, and then directly purified by flash column chromatography with PE/EA (3 /1, v/v) as the eluent to afford the desired tertiary alcohol 1a, in 87% yield as white solid. m.p. = 89.6–91.1 °C. 1H NMR (300 MHz, CDCl3) δ 8.03 (d, J = 7.8 Hz, 2H), 7.60 (t, J = 7.2 Hz, 1H), 7.48–7.36 (m, 6H), 7.23–7.20 (m, 2H), 5.57–5.46 (m, 2H), 4.21 (s, 1H), 1.78 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 190.3 (t, JCF = 30.3 Hz), 148.1, 145.6, 134.2, 130.7 (t, JCF = 4.0 Hz), 129.2, 129.1, 128.8, 128.0, 121.9, 116.4 (t, JCF = 264.6 Hz), 73.2 (t, JCF = 26.3 Hz), 54.3, 22.8 (t, JCF = 3.0 Hz); 19F NMR (376 MHz, CDCl3) δ −108.71 (d, J = 276.0 Hz, 1F), −110.37 (d, J = 276.0 Hz, 1F); IR (ATR): 1716, 1691, 1280, 1186, 1051, 808, 646 cm−1; HRMS (ESI): Exact mass calcd for C19H17F2N3NaO2 [M+Na]+: 380.1181, Found: 380.1187.
For base mediated examplessee:
For pioneering work in CuAAC:
For our efforts in asymmetric CuAAC, see:
For a review, see:
For Mannich-type reactions:
For cross-coupling reactions:
For allylation: