RSS-Feed abonnieren
DOI: 10.1055/a-2706-0614
Photoinduced and N-Bromosuccinimide-Initiated Esterification of Aromatic acids and Terminal Alkynes with Alcohols
Autoren
Funding Information The Scientific Research Foundation for Advanced Talents from Changde College.

Abstract
A mild and convenient protocol for the esterification of aromatic acids and terminal alkynes with alcohols by visible-light catalysis strategy using N-bromosuccinimide (NBS) as additive has been developed. This protocol provides access to substituted aromatic esters and α-ketoesters in moderate to good yields at room temperature. The advantage of this method is its operational simplicity compared to other known methods.
Publikationsverlauf
Eingereicht: 19. Mai 2025
Angenommen nach Revision: 01. September 2025
Accepted Manuscript online:
19. September 2025
Artikel online veröffentlicht:
06. November 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Greene TW, Wuts PGM. Protective Groups in Organic Synthesis. John Wiley & Sons; New York: 1991
- 1b Otera J. Esterification: Methods Reactions and Applications. Wiley; New York: 2003
- 1c Otera J. Esterification: Methods, Reactions, and Applications. Wiley; New York: 2004
- 2a Riemenschneider W, Bolt HM. Esters, Organic. In: Ullmann’s Encyclopedia of Industrial Chemistry. Wiley; 2005
- 2b Otera J, Nishikido J. Esterification: Methods, Reactions, and Applications. 2nd ed. Wiley-VCH; Weinheim: 2010
- 3a Danieli B, Luisetti M, Steurer S. et al. J Nat Prod 1999; 62: 670-673
- 3b Karas D, Gazǎa R, Valentová K. et al. J Nat Prod 2016; 79: 812-820
- 4a Liu B, Hu F, Shi B-F. ACS Catal 2015; 5: 1863-1881
- 4b Zhang J, Zhang S, Han J, Hu Y, Yan R. Chem Eng J 2015; 271: 269-275
- 4c Liu H, Chen J, Chen L, Xu Y, Guo X, Fang D. ACS Sustainable Chem Eng 2016; 4: 3140-3150
- 5a Fischer E, Speier A. Ber Dtsch Chem Ges 1895; 28: 3252-3258
- 5b Ishihara K, Ohara S, Yamamoto H. Science 2000; 290: 1140-1142
- 5c Orita A, Tanahashi C, Kakuda A, Otera J. Angew Chem, Int Ed 2000; 39: 2877-2879
- 5d Zhou H, Yang J, Ye L, Lin H, Yuan Y. Green Chem 2010; 12: 661-665
- 5e Han X-X, Du H, Hung C-T. et al. Green Chem 2015; 17: 499-508
- 5f Capkova K, Yoneda Y, Dickerson TJ, Janda KD. Bioorg Med Chem Lett 2007; 17: 6463-6466
- 5g Zhang L, Liu Z, Zhang H. et al. Bioorg Med Chem Lett 2012; 20: 3615-3621
- 6a Pickel TC, Akondi SM, Liebeskind LS. J Org Chem 2019; 84: 4954-4960
- 6b Pokluda A, Kohout M, Chudoba J, Krupicka M, Cibulka R. ACS Omega 2019; 4: 5012-5018
- 6c Turhanen PA, Leppanen J, Vepsalainen JJ. ACS Omega 2019; 4: 8974-8984
- 6d Wang X, Yang Y, Zhao Y. et al. J Org Chem 2020; 85: 6188-6194
- 7a Xu T, Alper H. J Am Chem Soc 2014; 136: 16970-16973
- 7b Tu Y, Yuan L, Wang T, Wang C, Ke J, Zhao J. J Org Chem 2017; 82: 4970-4976
- 7c Zhu Y, Yan H, Lu L, Liu D, Rong G, Mao J. J Org Chem 2013; 78: 9898-9905
- 7d Cao Y, Li L, Liu M, Xu H, Dai H. J Org Chem 2020; 85: 4475-4481
- 8a De Sarkar S, Grimme S, Studer A. J Am Chem Soc 2010; 132: 1190-1191
- 8b Rueping M, Sunden H, Hubener L, Sugiono E. Chem Commun 2012; 48: 2201-2203
- 8c Delany EG, Fagan C-L, Gundala S, Zeitler K, Connon SJ. Chem Commun 2013; 49: 6513-6515
- 9a Finney EE, Ogawa KA, Boydston A. J Am Chem Soc 2012; 134: 12374-12377
- 9b Chun S, Chung YK. Org Lett 2017; 19: 3787-3790
- 9c Liu H, Eisen MS. Organometallics 2017; 36: 1461-1464
- 10a Hie L, Fine Nathel NF, Shah TK. et al. Nature 2015; 524: 79-83
- 10b Hie L, Baker EL, Anthony SM, Desrosiers JN, Senanayake C, Garg NK. Int Ed 2016; 55: 15129-15132
- 10c Dander JE, Garg NK. ACS Catal 2017; 7: 1413-1423
- 10d Subramanian K, Yedage SL, Bhanage BM. J Org Chem 2017; 82: 10025-10032
- 10e Li G, Lei P, Szostak M. Org Lett 2018; 20: 5622-5625
- 11a Prier CK, Rankic DA, MacMillan DWC. Chem Rev 2013; 113: 5322-5363
- 11b Ravelli D, Protti S, Fagnoni M. Chem Rev 2016; 116: 9850
- 11c Marzo L, Pagire SK, Reiser O, König B. Angew Chem Int Ed 2017; 57: 10034-10072
- 11d Wang Z, Li C, Domen K. Chem Soc Rev 2019; 48: 2109-2125
- 12a Qin Y, Zhu L, Luo S. Chem Rev 2017; 117: 9433-9520
- 12b Wang C-S, Dixneuf PH, Soulé J-F. Chem Rev 2018; 118: 7532-7585
- 12c Festa AA, Voskressensky LG, Eycken EVV. Chem Soc Rev 2019; 48: 4401-4423
- 13 Yang Z, Tang A. Synlett 2019; 30: 1061-1066
- 14a Zhang Y, Xiao Q, Bao Y. et al. J Phys Chem C 2014; 118: 19062-19069
- 14b Mühldorf B, Wolf R. ChemCatChem 2017; 9: 920-923
- 14c Kumar A, Kumar P, Pathak AK, Chokkapu AN, Jain SL. ChemistrySelect 2017; 2: 3437-3443
- 15a März M, Kohout M, Neveselý T. et al. Org Biomol Chem 2018; 16: 6809-6817
- 15b Rogers DA, Brown RG, Brandeburg ZC. et al. ACS Omega 2018; 3: 12868-12877
- 16a Wang D, Mao J, Zhu C. Chem Sci 2018; 9: 5805-5809
- 16b Rogers DA, Brown RG, Brandeburg ZC. et al. ACS Omega 2018; 3: 12868-12877
- 16c Zou L, Wang L, Sun L, Xie X, Li P. Chem Commun 2020; 56: 7933-7936
- 17a Beebe R, Boyd L, Fonkeng SB. et al. J Org Chem 1995; 60: 6602-6603
- 17b Balkrishna SJ, Prasad CD, Panini P, Detty MR, Chopra D, Kumar S. J Org Chem 2012; 77: 9541-9552
- 17c Tripathi CB, Mukherjee S. J Org Chem 2012; 77: 1592-1598
- 17d Guha S, Rajeshkumar V, Kotha SS, Sekar GA. Org Lett 2015; 17: 406-409
- 18a Dubovtsev AY, Shcherbakov NV, Dar’in DV, Kukushkin VY. J Org Chem 2020; 85: 745-757
- 18b Ding D, Xu L, Wei Y. J Org Chem 2022; 87: 4912-4918
- 19 Romero NA, Nicewicz DA. Chem Rev 2016; 116: 10075-10166
- 20 Lind J, Jonsson M, Eriksen TE, Merényi G. J Phys Chem 1993; 97: 1610-1614