Subscribe to RSS
DOI: 10.1055/a-2720-9227
Intramolecular Hydride Shift-Mediated Double C(sp3)–H Bond Functionalization of Conformationally Flexible Aliphatic Alkenylidene Malonates
Authors
This work was partially supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science.

Abstract
We report on a double C(sp3)–H bond functionalization from a substrate that has no conformational bias, an indispensable factor for achieving the sequential hydride shift process. By employing ZnBr2 as a promoter and low concentration conditions (0.025 M), the sequential hydride shift/cyclization process from alkenylidene malonates with no substituents on the linker proceeded smoothly, affording dicyclic piperidine derivatives in moderate to good chemical yields with excellent diastereoselectivities.
Keywords
C–H bond functionalization - Redox process - Heterocycles - Hydride shift - Sequential reaction - Stereoselective reactionPublication History
Received: 25 July 2025
Accepted after revision: 10 October 2025
Accepted Manuscript online:
10 October 2025
Article published online:
10 November 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Godula K, Sames D. Science 2006; 312: 67
- 1b Bergman RG. Nature 2007; 446: 391
- 1c Alberico D, Scott ME, Lautens M. Chem Rev 2007; 107: 174
- 1d Davies HML, Manning JR. Nature 2008; 451: 417
- 1e Chen X, Engle KM, Wang D-H, Yu J-Q. Angew Chem Int Ed 2009; 48: 5094
- 1f Jazzar R, Hitce J, Renaudat A, Sofack-Kreutzer J, Baudoin O. Chem Eur J 2010; 16: 2654
- 1g Lyons TW, Sanford MS. Chem Rev 2010; 110: 1147
- 1h Davies HML, Du Bois J, Yu J-Q. Chem Soc Rev 2011; 40: 1855
- 1i Brückl T, Baxter RD, Ishihara Y, Baran PS. Acc Chem Res 2012; 45: 826
- 1j Qin Y, Lv J, Luo S. Tetrahedron Lett 2014; 55: 551
- 1k Davies HML, Morton D. J Org Chem 2016; 81: 343
- 1l Hu X-Q, Chen J-R, Xiao W-J. Angew Chem Int Ed 2017; 56: 1960
- 2a Tobisu M, Chatani N. Angew Chem Int Ed 2006; 45: 1683
- 2b Peng B, Maulide N. Chem Eur J 2013; 19: 13274
- 2c Wang L, Xiao J. Adv Synth Catal 2014; 356: 1137
- 2d Haibach MC, Seidel D. Angew Chem Int Ed 2014; 53: 5010
- 2e Kwon SJ, Kim DY. Chem Rec 2016; 16: 1191
- 2f An X-D, Xiao J. Org Chem Front 2021; 8: 1364
- 2g Mori K. Bull Chem Soc Jpn 2022; 95: 296
- 2h Wang L, Xiao J. Org Chem Front 2022; 9: 5041
- 2i Mori K, Okawa H. Tetrahedron Lett 2022; 110: 154178
- 2j Shen Y-B, Hu F, Li S-S. Tetrahedron 2022; 127: 133089
- 3a Yoshida T, Mori K. Chem Commun 2018; 54: 12686
- 3b Tamura R, Kitamura E, Tustsumi R, Yamanaka M, Akiyama T, Mori K. Org Lett 2019; 21: 2383
- 3c Otawa Y, Mori K. Chem Commun 2019; 55: 13856
- 3d Yokoo K, Mori K. Org Lett 2020; 22: 244
- 3e Hoshino D, Mori K. Org Lett 2021; 23: 9403
- 3f Okawa H, Kawasaki-Takasuka T, Mori K. Org Lett 2024; 26: 1662
- 3g Amano K, Kawasaki-Takasuka T, Mori K. Org Lett 1824; 2024: 26
- 3h Koyama R, Anada M, Sueki S. et al. Chem Commun 2024; 60: 3822
- 3i Matsui W, Matsuno T, Takiguchi I. et al. Org Lett 2025; 27: 6198
- 4a Pastine SJ, McQuaid KM, Sames D. J Am Chem Soc 2005; 127: 12180
- 4b Zhang C, Kanta De C, Mal R, Seidel D. J Am Chem Soc 2008; 130: 416
- 4c McQuaid KM, Sames D. J Am Chem Soc 2009; 131: 402
- 4d Shinkai D, Murase H, Hata T, Urabe H. J Am Chem Soc 2009; 131: 3166
- 4e Vadola PA, Sames D. J Am Chem Soc 2009; 131: 16525
- 4f Zhou G, Zhang J. Chem Commun 2010; 46: 6593
- 4g Jurberg ID, Peng B, Wöstefeld E, Wasserloos M, Maulide N. Angew Chem Int Ed 2012; 51: 1950
- 4h Sugiishi T, Nakamura H. J Am Chem Soc 2012; 134: 2504
- 4i Vadola PA, Carrea I, Sames D. J Org Chem 2012; 77: 6689
- 4j Alajarin M, Bonillo B, Marin-Luna M, Sanchez-Andrada P, Vidal A. Chem Eur J 2013; 19: 16093
- 4k Richer MT, Breugst M, Platonova AY. et al. J Am Chem Soc 2014; 136: 6123
- 4l Shen Y-B, Li L-F, Xiao M-Y, Yang J-M, Liu Q, Xiao J. J Org Chem 2019; 84: 13935
- 4m Shen Y-B, Wang L-X, Sun Y-M. et al. J Org Chem 2020; 85: 1915
- 4n Hu F, Li X, Ding Z. et al. ACS Catal 2022; 12: 943
- 4o An X-D, Shao D-Y, Qiu B, Xiao J. Org Lett 2023; 25: 2432
- 4p Hu F, Sun Z, Pan M. et al. Green Chem 2023; 25: 5134
- 4q An X-D, Shao D-Y, Qiu B, Xiao J. Org Lett 2023; 25: 2432
- 4r Hu F, Sun Z, Pan M. et al. Green Chem 2023; 25: 5134
- 4s Dong Y, Hu F, Wu H. et al. Org Lett 2024; 26: 332
- 4t Shen Y-B, Zhuang Q-H, Wang X-L. et al. Green Chem 2024; 26: 11899
- 4u Shen Y-B, Wang X-L, Zhuang Q-H. et al. Org Chem Front 2025; 12: 591
- 5a Murarka S, Deb I, Zhang C, Seidel D. J Am Chem Soc 2009; 131: 13226
- 5b Kang YK, Kim SM, Kim DY. J Am Chem Soc 2010; 132: 11847
- 5c Cao W, Liu X, Wang W, Lin L, Feng X. Org Lett 2011; 13: 600
- 5d Zhou G, Liu F, Zhang J. Chem Eur J 2011; 17: 3101
- 5e He Y-P, Du Y-L, Luo S-W, Gong LZ. Tetrahedron Lett 2011; 52: 7064
- 5f Chen L, Zhang L, Lv Z, Cheng J-P, Luo S. Chem Eur J 2012; 18: 8891
- 5g Zhang L, Chen L, Lv Z, Cheng J-P, Luo S. Chem Asian J 2012; 7: 2569
- 5h Jiao Z-W, Zhang S-Y, He C. et al. Angew Chem Int Ed 2012; 51: 8811
- 5i Kang YK, Kim DY. Adv Synth Catal 2013; 355: 3131
- 5j Suh CW, Woo SB, Kim DY, Asian J. Org Chem 2014; 3: 399
- 5k Kang YK, Kim DY. Chem Commun 2014; 50: 222
- 5l Suh CW, Kim DY. Org Lett 2014; 16: 5374
- 5m Yu J, Li N, Chen D-F, Luo S-W. Tetrahedron Lett 2014; 55: 2859
- 5n Cao W, Liu X, Guo J, Lin L, Feng X. Chem Eur J 2015; 21: 1632
- 5o Li J, Preinfalk A, Malide N. J Am Chem Soc 2019; 141: 143 See also, ref 6b
- 6a Mori K, Kurihara K, Yabe S, Yamanaka M, Akiyama T. J Am Chem Soc 2014; 136: 3744
- 6b Mori K, Isogai R, Kamei Y, Yamanaka M, Akiyama T. J Am Chem Soc 2018; 140: 6203
- 6c Mori K, Umehara N, Akiyama T. Chem Sci 2018; 9: 7327
- 6d Kataoka M, Otawa Y, Ido N, Mori K. Org Lett 2019; 21: 9334
- 6e Yokoo K, Sakai D, Mori K. Org Lett 2020; 22: 5801
- 6f Nakamura I, Anada M, Sueki S, Makino K, Mori K. Adv Synth Catal 2023; 365: 502
- 6g See, also: Yamagishi R, Anada M, Sueki S. et al. Org Lett 2025; 27: 1961
- 7 Alkenylidene barbiturate having dimethyl groups at the allylic position, suitable for this study, could be synthesized (See, SI)
For recent reviews on C–H activation, see:
See also, highlight on visible-light photocatalysis:
For recent reviews on internal redox process, see:
For selected recent examples of internal redox reaction developed by our group, see:
For selected examples of the internal redox reactions, see:
For examples of the enantioselective internal redox reactions, see:
For the double C(sp3)–H bond functionalization by sequential utilization of the internal redox reaction see: