RSS-Feed abonnieren
DOI: 10.1055/a-2738-7947
Catalytic Cyanation of Aryl Halides with Electrophilic N–CN Reagent
Autoren
DST-SERB, New Delhi, India (Project No. SB/SJF/2020-21/15)

Dedication
Dedicated to Professor S. Chandrasekaran on the occasion of his 80th birthday
Abstract
The palladium-catalyzed cyanation of aryl halides has been accomplished for the synthesis of aryl nitriles using the electrophilic N–CN reagent as a cyanating reagent. The method utilizes a mild base and a substoichiometric amount of zinc as a promotor and offers a mild cyanation that tolerates various functional groups to afford aryl nitriles in good to excellent yields. Preliminary mechanistic investigation revealed the important role of the methylene linkage and the reductant.
Publikationsverlauf
Eingereicht: 11. September 2025
Angenommen nach Revision: 04. November 2025
Accepted Manuscript online:
04. November 2025
Artikel online veröffentlicht:
27. November 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Citalopram and escitalopram. In: Meyler’s Side Effects of Drugs Aronson JK. ed. Sixteenth ed Oxford: Elsevier; 2016: 383-387
- 1b Davis C. Pericyazine In: xPharm: The Comprehensive Pharmacology Reference. Enna SJ, Bylund DB. eds New York: Elsevier; 2007: 1-5
- 1c Raats JI, Falkson G, Falkson HC. J Clin Oncol 1992; 10: 111-116
- 2a Bendale PM, Khadilkar BM. Synth Commun 2000; 30: 1713-1718
- 2b Convery MA, Davis AP, Dunne CJ, MacKinnon JW. Tetrahedron Lett 1995; 36: 4279-4282
- 3 Yan G, Zhang Y, Wang J. Adv Synth Catal 2017; 359: 4068-4105
- 4a Dhanalakshmi M, Anbarasan P. Transition-metal-catalyzed C – CN cross-coupling. In: The Chemical Transformations of C1 Compounds. 2022: 1337-1365
- 4b Kanchana US, Mathew TV, Anilkumar G. J Organomet Chem 2020; 920: 121337
- 4c Najam T, Shah SSA, Mehmood K. et al. Inorg Chim Acta 2018; 469: 408-423
- 4d Wen Q, Jin J, Zhang L, Luo Y, Lu P, Wang Y. Tetrahedron Lett 2014; 55: 1271-1280
- 5 Anbarasan P, Schareina T, Beller M. Chem Soc Rev 2011; 40: 5049-5067
- 6a Marcantonio KM, Frey LF, Liu Y. et al. Org Lett 2004; 6: 3723-3725
- 6b Dobbs KD, Marshall WJ, Grushin VV. J Am Chem Soc 2007; 129: 30-31
- 7 Buttke K, Reiher T, Niclas HJ. Synth Commun 1992; 22: 2237-2243
- 8a Li H, Zhang S, Yu X, Feng X, Yamamoto Y, Bao M. Chem Commun 2019; 55: 1209-1212
- 8b Reeves JT, Malapit CA, Buono FG. et al. J Am Chem Soc 2015; 137: 9481-9488
- 9a Anbarasan P, Neumann H, Beller M. Chem Eur J 2010; 16: 4725-4728
- 9b Anbarasan P, Neumann H, Beller M. Chem Eur J 2011; 17: 4217-4222
- 9c Anbarasan P, Neumann H, Beller M. Chem Asian J 2010; 5: 1775
- 10a Chaitanya M, Anbarasan P. Org Biomol Chem 2018; 16: 7084-7103
- 10b Cui J, Song J, Liu Q, Liu H, Dong Y. Chem Asian J 2018; 13: 482-495
- 11 Li J, Xu W, Ding J, Lee K-H. Tetrahedron Lett 2016; 57: 1205-1209
- 12a Prabhath RM, Williams L, Bhat VS, Sharma P. Molecules 2017; 22: 615
- 12b Larraufie M-H, Maestri G, Malacria M, Ollivier C, Fensterbank L, Lacôte E. Synthesis 2012; 44: 1279-1292
- 13 Dhanalakshmi M, Anbarasan P. Chem Commun 2025; 61: 10534-10537
- 14 Cai Y, Qian X, Rérat A, Auffrant A, Gosmini C. Adv Synth Catal 2015; 357: 3419-3423
- 15 Synthesis of p-methoxybenzonitrile 3a: In an oven dried pressure tube, 4-iodoanisole (0.30 mmol, 1.2 equiv), methylene attached N–CN reagent (0.25 mmol, 1 equiv), PdCl2 (0.01 mmol, 5 mol%), Cy3P·HBF4 (0.03 mmol, 15 mol%), Na2CO3 (0.51 mmol, 2 equiv), Zn dust (0.12 mmol, 50 mol%), were added under argon atmosphere. Dry DME (2 mL) was added into the reaction tube using syringe. The reaction mixture was kept in a pre-heated oil bath at 120 °C and stirred at the same temperature for 16 h. The reaction mixture was cooled to room temperature, diluted with DCM and washed with water. The combined organic layer was evaporated to get the crude product, which was further purified by column chromatography using ethyl acetate: hexane (0.5:9.5) as an eluting solvent to afford the p-methoxybenzonitrile 3a in 82% yield. colourless solid; R f = 0.5 in 5:95 ethyl acetate/hexane; FTIR (neat, cm−1): 2922, 2363, 2219, 1697, 1600, 1490, 1282, 1023, 827; 1H NMR (400 MHz, CDCl3, 24 °C): δ 7.58 (d, J = 8.8 Hz, 2H), 6.95 (d, J = 8.9 Hz, 2H), 3.86 (s, 3H); 13C {1H} NMR (100 MHz, CDCl3, 24 °C): δ 162.9, 134.1, 119.3, 114.8, 104.0, 55.6