Subscribe to RSS
DOI: 10.1055/a-2738-7991
Asymmetric Total Synthesis of Streptoglycerides A and B
Authors
SERB (No. CRG/2021/005729), New Delhi, India for funding this project.

Dedication
Dedicated to Professor S. Chandrasekharan on the occasion of his 80th birthday.
Abstract
A unified strategy for the asymmetric total synthesis of streptoglycerides A and B has been established and has confirmed their proposed absolute configurations. Key to our strategy is the synthesis of a bicyclic scaffold, employing a gold-catalyzed cascade cyclization of 1,6-diyn-ol operating through a 6-endo/5-exo-dig mechanism and its one-pot dihydroxylation followed trans-glycosylation to forge the central tricyclic core of these natural products. Noyori’s asymmetric transfer hydrogenation of an α, β-acetylenic ketones has been employed to install the key propargyl alcohol center with the desired absolute configuration. The pendant conjugated trans-1,3,5-triene/trans-1,3-diene side chains were introduced from a propanaldehyde unit following [Pd]-catalyzed oxidative dehydrogenation, Takai olefination, and Stille cross-coupling.
Keywords
Total synthesis - Noyori’s transfer hydrogenation - Gold-catalysis - Oxidative dehydrogenation - Takai olefination - Stille cross-couplingPublication History
Received: 23 September 2025
Accepted after revision: 04 November 2025
Accepted Manuscript online:
04 November 2025
Article published online:
27 November 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Gogineni V, Schinazi RF, Hamann MT. Chem Rev 2015; 115: 9655
- 1b Nicolaou KC, Rigol S, Yu R. CCS Chem 2019; 1: 3
- 1c Banday AH, Azha N, Farooq R. et al. Phytochem Lett 2024; 59: 124
- 1d Carroll AR, Copp BR, Grkovic T, Keyzers RA, Prinsep MR. Nat Prod Rep 2025; 42: 257
- 1e Santhiravel S, Dave D, Shahidi F. Pharmacol Rev 2025; 77: 100006
- 1f Ragozzino C, Casella V, Coppola A. et al. Mar Drugs 2025; 23: 116
- 2a Morris JC, Phillips AJ. Nat Prod Rep 2010; 27: 1186
- 2b Shen S-M, Appendino G, Guo Y-W. Nat Prod Rep 1803; 2022: 39
- 2c Shenvi RA. ACS Cent Sci 2024; 10: 519
- 3 Choi B-K, Park S-Y, Choi D-K. et al. Org Lett 2018; 20: 6037
- 4 Ding W, Li Y, Li X. et al. Phytochem 2024; 222: 114101
- 5 Jing S-S, Wang Y, Yan Y-M. et al. Tetrahedron Lett 2016; 57: 3215
- 6 Ding W, Li Y, Li X. et al. Phytochem 2024; 222: 114101
- 7 Kawamoto Y, Kobayashi T, Ito H. Org Lett 2019; 21: 5813
- 8 Kawamoto M, Sato S, Enomoto M, Ogura Y, Kuwahara S. Org Lett 2019; 21: 10099
- 9 Deng Y-F, Zou Y-K, Yang C-P, Houk K-N, Smith III A-B. J Org Chem 2021; 86: 13583
- 10 Khobragade VR, Ramana CV. Org Lett 2025; 27: 5931
- 11 Matsumura K, Hashiguchi S, Ikariay T, Noyori R. J Am Chem Soc 1997; 27: 8738
- 12a Chintawar CC, Yadav AK, Kumar A, Sancheti SP, Patil NT. Chem Rev 2021; 121: 8478
- 12b Lu Z, Li T, Mudshinge SR, Xu B, Hammond GB. Chem Rev 2021; 121: 8452
- 12c Collado A, Nelson DJ, Nolan SP. Chem Rev 2021; 121: 8612
- 13a Hashmi ASK, Schwarz L, Choi J-H, Frost TM. Angew Chem Int Ed 2000; 39: 2285
- 13b Sperger CA, Fiksdahl A. J Org Chem 2010; 75: 4542
- 13c Shi H, Fang L, Tan C. et al. J Am Chem Soc 2011; 133: 14944
- 13d Yue G, Zhang Y, Fang L, Li C-C, Luo T, Yang Z. Angew Chem Int Ed 2014; 53: 1837
- 13e Shi S, Tan C, Zhang W. et al. Org Lett 2015; 17: 2342
- 13f Shi H, Tan C, Zhang W. et al. J Org Chem 2016; 81: 751
- 13g Vulovic B, Kolarski D, Bihelovic F, Matovic R, Gruden M, Saicic R. Org Lett 2016; 18: 3886
- 14 Dupau P, Epple R, Thomas AA, Fokin VV, Sharpless KB. Adv Synth Catal 2002; 344: 421
- 15 Takai N, Nitta K, Utimoto K. J Am Chem Soc 1986; 108: 7408
- 16 Stille JK, Groh BL. J Am Chem Soc 1987; 109: 813
- 17 Williams DR, Clark MP, Berliner MA. Tetrahedron Lett 1999; 40: 2287
- 18 Mullapudi VB, Ramana CV. Tetrahedron Lett 2020; 61: 152367
- 19 Huang D, Newhouse TR. Acc Chem Res 2021; 54: 1118
- 20 Liu J, Zhu J, Jiang H, Wang W, Li J. Chem Asian J 2009; 1712
For some recent reviews see: