RSS-Feed abonnieren
DOI: 10.1055/a-2741-0999
Applications of Optically Pure Biphenyloxycyclohexanols in Deracemization of α-Substituted Aryloxypropanoic Acids by Dynamic Kinetic Resolution
Autoren

Dedication
Dedicated to Prof. S. Chandrasekaran on his 80th birthday and in recognition of his immense contributions to the field of organic synthesis.
Abstract
Two derivatives of chiral trans-2-biphenyloxycyclohexanol were screened as chiral auxiliaries for the α-alkylation of aryloxypropanoic acids to obtain enriched enantiomers. The chiral auxiliary controls the enantioselective formation of α-aryloxypropanoic acids by dynamic kinetic resolution. The 2-phenylphenoxy derivative was found to be more effective in controlling chirality in the product as compared to its 4-phenylphenoxy isomer. Formation of the major isomer is supported by the calculation of their relative energies by computational analysis, using Gaussian 16.0 B3LYP/6-31+G(d) as a basis set.
Keywords
trans-2-Aryloxycyclohexanol - Dynamic kinetic resolution - α-Substituted propanoic acids - Asymmetric synthesisPublikationsverlauf
Eingereicht: 09. Juni 2025
Angenommen nach Revision: 28. Juli 2025
Artikel online veröffentlicht:
27. November 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Tumashov AA, Vakarov SA, Sadretdinova LS. et al. Russ Chem Bull, Int Ed 2021; 70: 900
- 1b Kinne M, Ullrich R, Hammel KE, Scheibner K, Hofrichter M. Tetrahedron Lett 2008; 49: 5950
- 1c Zhong W, Zhang M, Li X, Zhang Y, Wang Z, Zheng J. Appl Biochem Biotechnol 2020; 190: 1049
- 1d Vakarov SA, Chulakov EN, Sadretdinova L. et al. ChemistrySelect 2020; 5: 4069
- 1e Xu Y, Feng R, Wang L. et al. Ecotoxicol Environ Saf 2020; 189: 110003
- 2a David PG, Hamon, Ralph A, Massy W, Josephine LN. Tetrahedron 1995; 51: 12645
- 2b Vittorio F, Jonathan TR, Chris HS, Jinhua JS. Chem Rev 2006; 106: 2734
- 2c Ha MW, Peak SM. Molecules 2021; 26: 4792
- 2d Zdun B, Ciesla P, Kutner J, Borowiecki P. Catalyst 2022; 12: 546
- 3a Duffey TA, MacKay JA, Vedejs E. J Org Chem 2010; 75: 4674
- 3b Kovalenko V, Cίsařová I. Chirality 2023; 35: 1012
- 3c Swain SP, Khanra M. ChemRxiv. 2024
- 3d Camps P, Gimenz S. Tetrahedron Asymmetry 1996; 7: 1227
- 3e Kato D, Miyamoto K, Ohta H. Tetrahedron Asymmetry 2004; 15: 2965
- 3f Kato D, Mitsuda S, Ohta H. J Org Chem 2003; 68: 7234
- 4a Ward RS. Tetrahedron Asymmetry 1995; 6: 1475
- 4b Takeda R, Kawamura A, Kawashima A. et al. Angew Chem Int Ed 2014; 53: 12214
- 4c Pellissier H. Eur J Org Chem 2022; e202101561
- 4d Zhu H, Manchado A, Farah AO. et al. ChemRxiv. 2024
- 4e Rong N, Zhou A, Liang M, Wang S-G, Yin Q. J Am Chem Soc 2024; 146: 5081
- 4f Haoxiang Z, Alejandro M, Abdikani Omar F. et al. Angwe Chem 2024; 136: e202402908
- 4g Antoine K, Jaume R, Celine B, Baptiste L, Clement M. ACS Catal 2025; 15: 2607-2619
- 4h Zhang J, Xuanzhu H, Yidan L, Can Z. Chem Catal 2025; 101329
- 5a Trost BM, Andersen NG. J Am Chem Soc 2002; 124: 14320
- 5b Steinreiber J, Faber K, Griengl H. Chem Eur J 2008; 14: 8060
- 5c Borén L, Leijondahl K, Bäckwall J-E. Tetrahedron Lett 2009; 50: 3237
- 6a Basu A, Gallagher DJ, Beak P. J Org Chem 1996; 61: 5718
- 6b Nakamura S, Nakagawa R, Watanabe Y, Toru T. J Am Chem Soc 2000; 122: 11340
- 6c Basu A, Thayumanavan S. Angew Chem Int Ed 2002; 41: 716
- 6d Clayden J, Mitjans D, Youssef LH. J Am Chem Soc 2002; 124: 5266
- 6e Coldham I, Dufour S, Haxell TFN, Howard S, Vennall GP. Angew Chem Int Ed 2002; 41: 3887
- 6f Laumer JM, Kim DD, Beak P. J Org Chem 2002; 67: 6797
- 6g Wang L, Nakamura S, Toru T. Org Biomol Chem 2004; 2: 2168
- 6h Park YS, Yum EK, Basu A, Beak P. Org Lett 2006; 8: 2667
- 6i Nakamura S, Hirata N, Yamada R, Kita T, Shibata N, Toru T. Chem Eur J 2008; 14: 5519
- 6j Robinson SP, Sheikh NS, Baxter CA, Coldham I. Tetrahedron Lett 2010; 51: 3642
- 6k Carter N, Li X, Reavey L, Meijer AJHM, Coldham I. Chem Sci 2018; 9: 1352
- 7a Beak P, Anderson DR, Curtis MD, Laumer JM, Pippel DJ, Weisenburger GA. Acc Chem Res 2000; 33: 715
- 7b Lee WK, Park YS, Beak P. Acc Chem Res 2009; 42: 224
- 8a Corey EJ, Ensley HE. J Am Chem Soc 1975; 97: 6908
- 8b Corey EJ, Ensley HE, Suggs JW. J Org Chem 1976; 41: 380
- 8c Whitesell JK, James D, Carpenter JF. J Chem Soc Chem Commun 1985; 1449
- 8d Buschmann H, Scharf HD. Synthesis 1988; 827
- 8e Whitesell JK, Lawrence RM, Chen H-H. J Org Chem 1986; 51: 4779
- 8f Oppolzer W. Pure Appl Chem 1990; 62: 1241
- 8g Evans DA, Bartroli J, Shih TL. J Am Chem Soc 1981; 103: 2127
- 8h Evans DA, Ennis MD, Mathre DJ. J Am Chem Soc 1982; 104: 1737
- 8i Evans DA, Chapman KT, Bisaha J. J Am Chem Soc 1984; 106: 4261
- 8j Evans DA, Chapman KT, Hung DT, Kawaguchi AT. Angew Chem Int Ed Engl 1987; 26: 1184
- 9a Whitesell JK. Chem Rev 1992; 92: 953
- 9b Al Hazmi AM, Sheikh NS, Bataille CJR. et al. Org Lett 2014; 16: 5104
- 10a Jain N, Bedekar AV. Tetrahedron Lett 2016; 57: 692
- 10b Khanvilkar AN, Samanta SG, Bedekar AV. Org Biomol Chem 2019; 17: 2670
- 10c Pandavadara AR, Khanvilkar AN, Bedekar AV. Tetrahedron 2024; 168: 134326
- 11a Surendra K, Shrilakshmi Krishnaveni N, Nageshwar YVD, Rama Rao K. J Org Chem 2003; 68: 4994
- 11b Das B, Krishnaiah M, Thirupathi P, Laxminarayana K. Tetrahedron Lett 2007; 48: 4263
- 12 Xu J. Molecules 2024; 29: 1454
- 13 Neises B, Steglich W. Angew Chem Int Ed 1978; 17: 522
- 14 Crystallographic data for the structure 9 have been deposited with the Cambridge Crystallographic Data Centre [CCDC 2457273]. Copies of the data can be obtained from http://www.ccdc.cam.ac.uk/conts/retrieving.html or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CD21EZ, UK (fax: +44-1223-336033; e-mail: deposit@ccdc.cam.ac.uk).
- 15 Frisch MJ, Trucks GW, Schlegel HB. et al. Gaussian 16, Revision A.03. Wallingford CT: Gaussian, Inc.; 2016
- 16 Standard Experimental Details of Asymmetric Synthesis: Deracemization of α-aryloxypropanoic acid: Synthesis of (1R,2R)-2-([1,1′-biphenyl]-4-yloxy)cyclohexyl (S)-2-(4-bromophenoxy)propanoate (R,R,S)-11 Take a chiral alcohol (R, R)-3 (0.1 g, 0.37 mmol) in a 25mL round bottom and stirred at rt for 5 min. Then add DCC (0.15 g, 0.74 mmol) and DMAP (0.01 g, 0.074 mmol) and cooled to 0 °C. After 5 min, add a solution of 2-(4-bromophenoxy) propanoic acid (0.18 g, 0.74 mmol) dropwise. The reaction mixture was stirred at rt for 6 h. Then, the reaction mixture was filtered through a Celite bed, washed with dichloromethane, and purified by column chromatography over silica gel (10% ethyl acetate/petroleum ether), affording a colorless oil (0.11 g, 80%). The diastereomeric ratio was determined by 1H NMR analysis and was found to be 43%. 1H NMR (CDCl3, 400 MHz): δ ppm 7.60–7.55 (m, 4H), 7.51–7.47 (m, 2H), 7.45–7.43 (m, 1H), 7.36–7.21 (m, 2H), 7.04–7.02 (d, J = 8.8 Hz, 2H), 6.71–6.64 (d, J = 8.8 Hz, 2H), 5.10 (m, 1H, –CHOCO), 4.68–4.63 (q, 1H, Ca H, minor isomer), 4.61–4.56 (q, 1H, Ca H, major isomer), 4.35–4.29 (m, 1H, –CHOAr–, major isomer), 4.24–4.19 (m, 1H, –CHOAr–, minor isomer), 2.15–2.10 (m, 2H), 1.79 (m, 2H), 1.65–1.63 (d, 3H), 1.56–1.40 (m, 4H). 13C NMR (CDCl3, 100 MHz): δ ppm 171.3, 157.5, 157.2, 156.6, 140.6, 134.2, 132.3, 128.1, 126.7, 116.7, 115.9, 113.6, 77.4, 72.6, 30.0, 29.9, 23.2, 23.0, 18.4. IR (KBr): v 3440, 3034, 2929, 2862, 1750, 1606, 1519, 1486, 1451, 1376, 1351, 1283, 1244, 1197, 1134, 1096, 1071, 1054, 949, 881, 862, 822, 762, 694, 639, 600, 500 cm−1 HRMS (ESI): calcd for C27H28BrO4 [M+H]+ 495.1171 found 495.1188. HPLC Conditions: Chiral Cel OD-H Column, 2.5% isopropyl alcohol-Hexane, UV = 254nm, flow rate = 0.5 mL/min. Rt = 16.72 min (minor isomer), Rt = 17.73 min (major isomer).