RSS-Feed abonnieren
DOI: 10.1055/a-2752-9318
Aminoxyl-mediated Electrocatalytic C–N Coupling of Azoles with Cycloheptatriene
Autoren
Gefördert durch: University of Connecticut Holster Scholar Program

Dedication
The University of Connecticut Holster Scholars Program and Honors Program are thanked for funding.
Abstract
A methodology is reported for the synthesis of substituted 1,3,5-cycloheptatrienes by means of an electrocatalytic, aminoxyl-mediated C–N coupling. The reaction employs commercially available electrodes and standard electrochemical equipment, proceeding under mild conditions without the need for excess cycloheptatriene, prefunctionalized starting materials, or added bases. The method is effective across a broad range of azole substrates, delivering good to excellent product yields. Selectivity is high and both dimer and by-product formation are effectively suppressed. Operational simplicity, short reaction times, and scalability make this strategy a practical and versatile tool for accessing cycloheptatriene derivatives and expanding the scope of electrocatalytic C–H functionalization reactions.
Keywords
Electrochemistry - C–H functionalization - Azoles - Cycloheptatriene - Nitroxide - ElectrocatalyticPublikationsverlauf
Eingereicht: 16. September 2025
Angenommen nach Revision: 21. November 2025
Artikel online veröffentlicht:
09. Dezember 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Zahra FT, Saeed A, Mumtaz K, Albericio F. Molecules 2023; 28: 4095
- 2 Yunnikova LP, Akent’eva TA, Ésenbaeva VV. Pharm Chem J 2015; 49: 243
- 3 Basse R, Vanicek S, Höfer T. et al. Organometallics 2021; 40: 2736
- 4 Chen W, Sheridan JB, Coté ML, Lalancette RA. Organometallics 1996; 15: 2700
- 5 Glöckner A, Tamm M. Chem Soc Rev 2013; 42: 128
- 6 Lyons DJM, Crocker RD, Blümel M, Nguyen TV. Angew Chem Int Ed 2017; 56: 1466
- 7 Von Doering EW, Knox LH. J Am Chem Soc 1957; 79: 352
- 8 Jordan NW, Elliott IW. J Org Chem 1962; 27: 1445
- 9 Mukai T, Tsuruta H. Bull Chem Soc Jpn 1964; 37: 1018
- 10 Hanefeld W, Hunz I. Arch Pharm 1993; 326: 323
- 11 Dushenko GA, Mikhailov IE, Mikhailova OI, Minkin VI. Dokl Chem 2010; 430: 11
- 12 Templin SS, Wallock NJ, Haworth DT, Donaldson WA, Bennett DW, Siddiquee T. J Heterocyclic Chem 2007; 44: 719
- 13 Yunnikova LP, Likhareva YE, Islyaykin MK, Danilova EA. Russ J Org Chem 2020; 56: 828
- 14 Lyons DJM, Dinh AH, Ton NNH, Crocker RD, Mai BK, Nguyen TV. Org Lett 2022; 24: 2520
- 15 Alsamarrai ASH, L-Rifaie DA. J King Saud Univ - Sci 2020; 32: 1332
- 16 Shao S, Tian L, Wang Y. Eur J Org Chem 2019; 4089
- 17 Hamlin TA, Kelly CB, Ovian JM, Wiles RJ, Tilley LJ, Leadbeater NE. J Org Chem 2015; 80: 8150
- 18 Wang F, Stahl SS. Acc Chem Res 2020; 53: 561
- 19 Schroeder CM, Politano F, Ohlhorst KK, Leadbeater NE. RSC Adv 2023; 13: 25459
- 20 Rafiee M, Miles KC, Stahl SS. J Am Chem Soc 2015; 137: 14751-14757
- 21 Miller SA, Nandi J, Leadbeater NE, Eddy NA. Eur J Org Chem 2020; 108
- 22 Kingston C, Palkowitz MD, Takahira Y. et al. Acc Chem Res 2020; 53: 72
- 23 Schotten C, Nicholls TP, Bourne RA, Kapur N, Nguyen BN, Willans CN. Green Chem 2020; 22: 3358
- 24 Grubert L, Jacobi D, Abraham W. J Prakt Chem 1999; 341: 620
- 25 Prakash N, Rajeev R, John A, Vijayan A, George L, Varghese A. ChemistrySelect 2021; 6: 7691
- 26 Xu Z, Kovács E. ACS Org Inorg Au 2024; 4: 471
- 27 Ji K, Johnson RP, McNeely J, Faruk MA, Porco Jr JA. J Am Chem Soc 2024; 146: 4892-4902
- 28 Bray JM, Stephens SM, Weierbach SM, Vargas K, Lambert KM. Chem Commun 2023; 59: 14063