RSS-Feed abonnieren
DOI: 10.1055/s-0028-1088210
Mild Michael Addition of Glycine Imines to Aromatic Nitroalkenes Catalyzed by DBU with LiOTf as an Additive
Publikationsverlauf
Publikationsdatum:
16. März 2009 (online)

Abstract
A mild Michael addition of glycine imines to aromaticnitroalkenes catalyzed by 10 mol% DBU with LiOTf as an additive was developed. In most cases, the products could be obtained in good yields (up to 96%) with moderate to good diastereoselectivities (up to 10:1). The selectivity for syn adduct can be reversed to anti when the R group of glycine imines was changed from methyl or ethyl to tert-butyl.
Key words
Michael addition - nitroalkene - catalysis - amino acids - DBU
- Supporting Information for this article is available online:
- Supporting Information (PDF)
- 1a
Barrett GC. Chemistry and Biochemistry of the Amino Acids Chapman and Hall; London: 1985.Reference Ris Wihthout Link - 1b
Jones JH. Amino Acids and Peptides RCS; London: 1992.Reference Ris Wihthout Link - For recent reviews, see:
- 2a
Najera C.Sansano JM. Chem. Rev. 2007, 107: 4584Reference Ris Wihthout Link - 2b
Maruoka K.Ooi T. Chem. Rev. 2003, 103: 3013Reference Ris Wihthout Link - 2c
O’Donnell MJ. Acc. Chem. Res. 2004, 37: 506Reference Ris Wihthout Link - 2d
Lygo B.Andrews BI. Acc. Chem. Res. 2004, 37: 518Reference Ris Wihthout Link - 2e
O’Donnell MJ. Aldrichimica Acta 2001, 34: 3Reference Ris Wihthout Link - 3a
O’Donnell MJ.Boniece JM.Earp SE. Tetrahedron Lett. 1978, 2641Reference Ris Wihthout Link - 3b
O’Donnell MJ.Eckrich TM. Tetrahedron Lett. 1978, 4625Reference Ris Wihthout Link - 4a
Ryoda A.Yajima N.Haga T.Kumamoto T.Nakanishi W.Kawahata M.Yamaguchi K.Ishikawa T. J. Org. Chem. 2008, 73: 133Reference Ris Wihthout Link - 4b
Saito S.Tsubogo T.Kobayashi S. J. Am. Chem. Soc. 2007, 129: 5364Reference Ris Wihthout Link - 4c
Reddy VJ.Roforth MM.Tan C.Reddy MVR. Inorg. Chem. 2007, 46: 381Reference Ris Wihthout Link - 4d
Arai S.Takahashi F.Tsuji R.Nishida A. Heterocycles 2006, 67: 495Reference Ris Wihthout Link - 4e
Chinchilla R.Mazón P.Nájera C.Ortega FJ.Yus M. ARKIVOC 2005, (νi): 222Reference Ris Wihthout Link - 4f
Rueffer ME.Fort LK.MacFarland DK. Tetrahedron: Asymmetry 2004, 15: 3297Reference Ris Wihthout Link - 4g
Ohshima T.Shibuguchi T.Fukuta Y.Shibasaki M. Tetrahedron 2004, 60: 7743Reference Ris Wihthout Link - 4h
Siebum AHG.Tsang RKF.van der Steen R.Raap J.Lugtenburg J. Eur. J. Org. Chem. 2004, 4391Reference Ris Wihthout Link - 4i
Akiyama T.Hara M.Fuchibe K.Sakamoto S.Yamaguchi K. Chem. Commun. 2003, 1734Reference Ris Wihthout Link - 4j
Corey EJ.Noe MC. Org. Synth. 2003, 80: 34Reference Ris Wihthout Link - 4k
Shibuguchi T.Fukuta Y.Akachi Y.Sekine A.Ohshima T.Shibasaki M. Tetrahedron Lett. 2002, 43: 9539Reference Ris Wihthout Link - 4l
Ishikawa T.Araki Y.Kumamoto T.Seki H.Fukuda K.Isobe T. Chem. Commun. 2001, 245Reference Ris Wihthout Link - 4m
O’Donnell MJ.Delgado F.Dominguez E.de Blas J.Scott WL. Tetrahedron: Asymmetry 2001, 12: 821Reference Ris Wihthout Link - 4n
Tzalis D.Knochel P. Tetrahedron Lett. 1999, 40: 3685Reference Ris Wihthout Link - 4o
Corey EJ.Noe MC.Xu F. Tetrahedron Lett. 1998, 39: 5347Reference Ris Wihthout Link - 4p
Lopez A.Moreno-Mañas M.Pleixats R.Roglans A.Ezquerra J.Pedregal C. Tetrahedron 1996, 52: 8365Reference Ris Wihthout Link - 4q
Moreno-Mañas M.Pleixats R.Roglans A. Liebigs Ann. 1995, 1807Reference Ris Wihthout Link - 5a
Arai S.Tokumaru K.Aoyama T. Chem. Pharm. Bull. 2004, 52: 646Reference Ris Wihthout Link - 5b
Zhang F.-Y.Corey EJ. Org. Lett. 2000, 2: 1097Reference Ris Wihthout Link - 6a
Shibuguchi T.Mihara H.Kuramochi A.Sakuraba S.Ohshima T.Shibasaki M. Angew. Chem. Int. Ed. 2006, 45: 4635Reference Ris Wihthout Link - 6b
Wannaporn D.Ishikawa T. Mol. Diversity 2005, 9: 321Reference Ris Wihthout Link - 6c
Lygo B.Allbutt B.Kirton EHM. Tetrahedron Lett. 2005, 46: 4461Reference Ris Wihthout Link - 6d
Tullis JS.Laufersweiler MJ.VanRens JC.Natchus MG.Bookland RG.Almstead NG.Pikul S.De B.Hsieh LC.Janusz MJ.Branch TM.Peng SX.Jin YY.Hudlicky T.Oppong K. Bioorg. Med. Chem. Lett. 2001, 11: 1975Reference Ris Wihthout Link - The benzaldehyde derived glycine imines have been widely used as precursor of 1,3-dipole in [3+2] reactions. For recent examples, see:
- 7a
Yan X.-X.Peng Q.Zhang Y.Zhang K.Hong W.Hou X.-L.Wu Y.-D. Angew. Chem. Int. Ed. 2006, 45: 1979Reference Ris Wihthout Link - 7b
Xue M.-X.Zhang X.-M.Gong L.-Z. Synlett 2008, 691Reference Ris Wihthout Link - For reviews, see:
- 8a
Barrett AGM.Graboski GG. Chem. Rev. 1986, 86: 751Reference Ris Wihthout Link - 8b
Berner OM.Tedeschi L.Enders D. Eur. J. Org. Chem. 2002, 1877Reference Ris Wihthout Link - 9
Rowley M.Leeson PD.Williams BJ.Moore KW.Baker R. Tetrahedron 1992, 48: 3557 - 10
Zindel J.de Meijere A. Synthesis 1994, 190 - 11a
Ayerbe M.Arrieta A.Cossío FP.Linden A. J. Org. Chem. 1998, 63: 1795Reference Ris Wihthout Link - 11b
Vivanco S.Lecea B.Arrieta A.Prieto P.Morao I.Linden A.Cossío FP. J. Am. Chem. Soc. 2000, 122: 6078Reference Ris Wihthout Link - 12
Cashin AL.Torrice MM.McMenimen KA.Lester HA.Dougherty DA. Biochemistry 2007, 46: 630 - 13a
Lu S.-F.Du D.-M.Xu J.Zhang S.-W. J. Am. Chem. Soc. 2006, 128: 7418Reference Ris Wihthout Link - 13b
Lu S.-F.Du D.-M.Xu J. Org. Lett. 2006, 8: 2115Reference Ris Wihthout Link - 13c
Liu H.Xu J.Du D.-M. Org. Lett. 2007, 9: 4725Reference Ris Wihthout Link - 13d
Liu H.Lu S.-F.Xu J.Du D.-M. Chem. Asian J. 2008, 3: 1111Reference Ris Wihthout Link - 13e
Zhou W.-M.Liu H.Du D.-M. Org. Lett. 2008, 10: 2817Reference Ris Wihthout Link - 14
Ono N. The Nitro Group in Organic Synthesis Wiley-VCH; New York: 2001.Reference Ris Wihthout Link
References and Notes
General Procedure
for Michael Addition of Glycine Imines to Aromatic Nitroalkenes
To
a stirred solution of nitroalkene (1.2 mmol), LiOTf (16 mg, 0.1
mmol), and ethyl diphenylmethyleneiminoacetate (267 mg, 1 mmol)
or tert-butyl diphenylmethyleneimino-acetate
(295 mg, 1 mmol) in dry THF (1 mL) was added DBU (15 mg, 0.1 mmol)
in dry THF (1 mL). The mixture was stirred at r.t. for 24 h. After
being quenched by H2O, the mixture was extracted by CH2Cl2.
The organic phase was separated and dried with Na2SO4.
The diastereoselectivity was determined by NMR analysis of curde
product. The sample for analysis was purified on column chromatography (SiO2,
200-300 mesh) using PE-EtOAc (20:1) as eluent
and recrystallized from Et2O and PE.
syn
-Ethyl 2-Diphenylmethyleneimino-4-nitro-3-phenyl-butanoate (5a)
According to the general
procedure, a white solid was obtained; mp 84-85 ˚C. ¹H
NMR (300 MHz, CDCl3): δ = 1.20
(t, J = 7.2
Hz, 3 H), 4.11-4.16 (m, 2 H), 4.27-4.38 (m, 2
H), 5.14-5.18 (m, 2 H), 6.60-6.62 (d, J = 6.9 Hz,
2 H), 7.14-7.48 (m, 1 1H), 7.64 (d, J = 6.9
Hz, 2 H). IR: 1735, 1551, 1446, 1368, 1316, 1290, 1190, 1024, 695
cm-¹. MS (70 eV, EI): m/z (%) = 416
(3) [M+], 343 (10), 296 (23),
267 (21), 266 (100), 193 (47), 165 (50). Anal. Calcd (%)
for C25H24N2O4: C, 72.10;
H, 5.81; N, 6.73. Found: C, 71.74; H, 5.83; N, 6.55.2.
syn
-Ethyl 2-Diphenylmethyleneimino-3-(4-methylphenyl)-4-nitrobutanoate (5b)
According to the general
procedure, a white solid was obtained; mp 102-103 ˚C. ¹H
NMR (300 MHz, CDCl3): δ = 1.19
(t, J = 6.9
Hz, 3 H), 2.29 (s, 3 H), 4.10-4.15 (m, 2 H), 4.27-4.32
(m, 2 H), 5.10-5.12 (m, 2 H), 6.65 (d, J = 6.0 Hz,
2 H), 7.04 (s, 4 H), 7.27-7.45 (m, 6 H), 7.65 (d, J = 7.5 Hz,
2 H). ¹³C NMR (75 MHz, CDCl3): δ = 14.0,
21.0, 46.2, 61.5, 68.7, 76.3, 127.3, 128.0, 128.2, 128.3, 128.6,
128.9, 129.3, 130.9, 134.0, 135.4, 137.4, 138.7, 169.9, 172.6. IR: 1736,
1732, 1619, 1552, 1516, 1446, 1379, 1317, 1288, 1182, 1026, 695
cm-¹. MS (70 eV, EI): m/z (%) = 430
(4) [M+], 413 (3), 357 (7),
310 (17), 267 (27), 266 (100), 238 (22), 193 (69), 165 (61). Anal.
Calcd (%) for C26H26N2O4:
C, 72.54; H, 6.09; N, 6.51. Found: C, 72.36; H, 6.22; N, 6.35.